Yıl: 2021 Cilt: 8 Sayı: 2 Sayfa Aralığı: 809 - 816 Metin Dili: İngilizce DOI: 10.31202/ecjse.894617 İndeks Tarihi: 06-10-2022

In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease

Öz:
The outbreak of COVID-19 caused by the SARS-CoV-2 virus has recently affected millions worldwide. The natural compounds obtained from medicinal plants have been proven to be the source of many treatments throughout history. Efforts to combat Sars-CoV-2 generally focused on repositioning drugs or finding treatments with natural compounds and have been rapidly ongoing. Main protease (Mpro) is a vital protein of SARS-CoV-2 and an important target of drug research. The present study evaluated seven artemisinin derivatives: artemisinin, artemether, arteether, artesunate, dihydroartemisinic acid, dihydroartemisinin and artemisinic acid. For this purpose, the molecular docking study was carried out to investigate the potency of artemisinin derivatives against the SARS-CoV-2 Mpro. As a result, artesunate, dihydroartemisinic acid and dihydroartemisinin had promising results in Mpro inhibition with the binding energies between -8.42 and -9.35 kcal/mol.
Anahtar Kelime: Artemisinin Artesunate COVID-19 Main protease

Artemisinin Türevi Bileşiklerin Sars-CoV-2 Ana Proteaz Proteinine Karşı In Silico İnhibisyon Potansiyeli

Öz:
SARS-CoV-2 virüsünün neden olduğu COVID-19 salgını son zamanlarda dünya çapında milyonlarca insanı etkiledi. Şifalı bitkilerden elde edilen doğal bileşiklerin, tarih boyunca birçok tedavinin kaynağı olduğu kanıtlanmıştır. Sars-CoV-2 ile mücadele çabaları genellikle ilaçları yeniden konumlandırmaya veya doğal bileşiklerle tedaviler bulmaya odaklandı ve hızla devam ediyor. Ana proteaz (Mpro), SARS-CoV-2'nin hayati bir proteinidir ve ilaç araştırmalarının önemli bir hedefidir. Bu çalışmada, artemisinin, artemether, arteether, artesunate, dihydroartemisinic acid, dihydroartemisinin ve artemisinic Acid olmak üzere 7 artemisinin türevinin değerlendirilmesi amaçlanmıştır. Bu amaçla, artemisinin türevlerinin SARS-CoV-2 Mpro'ya karşı potansiyelini araştırmak için moleküler modelleme çalışması yapılmıştır. Sonuç olarak, artesunate, dihydroartemisinic acid ve dihydroartemisinin, -8.42 ile -9.35 kcal/mol arasında bağlanma enerjisi ile Mpro inhibisyonu açısından umut verici sonuçlar ortaya çıkarmıştır.
Anahtar Kelime: Artemisinin Artesunate COVID-19 Ana proteaz

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Emirik, M., Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study, J. Biomol. Struct. Dyn., 2021, doi:10.1080/07391102.2020.1835719.
  • [2]. Islam, M.T., Sarkar, C., El-Kersh, D.M., Jamaddar, S., Uddin, S.J., Shilpi, J.A., Mubarak, M.S., Natural products and their derivatives against Coronavirus: A review of the non-clinical and pre-clinical data, Phyther. Res. 2020, 34: 2471–2492.
  • [3]. Rahman, F., Tabrez, S., Ali, R., Alqahtani, A.S., Ahmed, M.Z., Rub, A., Journal of Traditional and Complementary Medicine Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins, J. Tradit. Chinese Med. Sci. 2021, 11: 173– 179.
  • [4]. Scavone, C., Brusco, S., Bertini, M., Sportiello, L., Rafaniello, C., Zoccoli, A., Berrino, L., Racagni, G., Rossi, F., Capuano, A., Current pharmacological treatments for COVID-19: What’s next?, Br. J. Pharmacol. 2020, 177: 4813–4824.
  • [5]. Singh, E., Khan, R.J., Jha, R.K., Amera, G.M., Jain, M., Singh, R.P., Muthukumaran, J., Singh, A.K., A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods, J. Genet. Eng. Biotechnol. 2020, 18(69): 2-12.
  • [6]. Boras, B., Jones, R.M., Anson, B.J., Arenson, D., Aschenbrenner, L., Bakowski, M.A., Beutler, N., Binder, J., Chen, E., Eng, H., et al., Discovery of a Novel Inhibitor of Coronavirus 3CL Protease as a Clinical Candidate for the Potential Treatment of COVID-19, bioRxiv Prepr. Serv. Biol. 2020, doi:10.1101/2020.09.12.293498.
  • [7]. Tahir ul Qamar, M., Alqahtani, S.M., Alamri, M.A., Chen, L.L., Structural basis of SARS- CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal. 2020, 10: 313–319.
  • [8]. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., et al., The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. U. S. A. 2003, 100: 13190–13195.
  • [9]. Qu, J., Li, G., Wang, J., Huang, G.H.J., Chen, Y., Qu, Q., Qiong, X.C., Comparative effectiveness of Lopinavir/Ritonavir-based regimens in COVID-19, Clinical and Experimental Pharmacology and Physiology, 2021, 48 (2): 203–210.
  • [10]. Sharma, D., Sharma, N., Sharma, P., Subramaniam, G., Review of investigational drugs for coronavirus disease 2019, J. Educ. Health Promot., 2021, 10 (31): 10-31.
  • [11]. Wangkheirakpam, S., "Chapter 2: Traditional and Folk Medicine as a Target for Drug Discovery", Natural Products and Drug Discovery, Elsevier, 2018.
  • [12]. Ganjhu, R.K., Mudgal, P.P., Maity, H., Dowarha, D., Devadiga, S., Nag, S., Arunkumar, G., Herbal plants and plant preparations as remedial approach for viral diseases, VirusDisease 2015, 26: 225–236.
  • [13]. Akbaş, M.N., Akçakaya, A., COVID-19 ve Fitoterapi, Bezmialem Sci., 2020, 8: 428–437.
  • [14]. Din, M., Ali, F., Waris, A., Zia, F., Ali, M., Phytotherapeutic options for the treatment of COVID-19: A concise viewpoint, Phyther. Res., 2020, 34: 2431–2437.
  • [15]. Antonelli, M., Donelli, D., Maggini, V., Firenzuoli, F., Phytotherapic compounds against coronaviruses: Possible streams for future research, Phyther. Res., 2020, 34 (7): 1469–1470.
  • [16]. Boozari, M., Hosseinzadeh, H., Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies, Phyther. Res., 2020, 35 (2): 864-876.
  • [17]. Derosa, G., Maffioli, P., D’Angelo, A., Di Pierro, F., A role for quercetin in coronavirus disease 2019 (COVID-19), Phyther. Res., 2020, 35 (3): 1230-1236.
  • [18]. Sehailia, M., Chemat, S., Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19, J. Biomol. Struct. Dyn., 2020, doi:10.1080/07391102.2020.1796809.
  • [19]. Haq, F.U., Roman, M., Ahmad, K., Rahman, S.U., Shah, S.M.A., Suleman, N., Ullah, S., Ahmad, I., Ullah, W., Artemisia annua: Trials are needed for COVID-19, Phyther. Res., 2020, 34 (10): 2423-2424.
  • [20]. Castilho, P.C., Gouveia, S.C., Rodrigues, A.I. Quantification of artemisinin in Artemisia annua extracts by 1H-NMR, Phytochem. Anal., 2008, 19: 329–334.
  • [21]. D’alessandro, S., Scaccabarozzi, D., Signorini, L., Perego, F., Ilboudo, D.P., Ferrante, P., Delbue, S., The use of antimalarial drugs against viral infection., Microorganisms, 2020, 8: 1– 26.
  • [22]. Gendrot, M., Duflot, I., Boxberger, M., Delandre, O., Jardot, P., Le Bideau, M., Andreani, J., Fonta, I., Mosnier, J., Rolland, C., et al., Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate, Int. J. Infect. Dis., 2020, 99: 437–440,
  • [23]. Schrödinger Release 2018-4: Maestro, Schrödinger, LLC 2018.
  • [24]. Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F., Schroeder, M., PLIP: Fully automated protein-ligand interaction profiler, Nucleic Acids Res., 2015, 43: W443–W447.
  • [25]. Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., et al., Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature 2020, 582: 289–293.
  • [26]. The RCSB Protein Data Bank Available online: https://www.rcsb.org/structure/7BQY.
  • [27]. Schrödinger Release 2018-4: Protein Preparation Wizard, Epik, Schrödinger, LLC, New York, NY, 2016, Impact, Schrödinger, LLC, New York, NY, 2016, Prime, Schrödinger, LLC, New York, NY, 2018.
  • [28]. Schrödinger Release 2018-1: Induced Fit Docking protocol, Glide, Schrödinger, LLC, New York, NY, 2016, Prime, Schrödinger, LLC 2018.
  • [29]. Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J.Y., Wang, L., Lupyan, D., Dahlgren, M.K., Knight, J.L., et al., OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins., J. Chem. Theory Comput., 2016, 12: 281–296.
  • [30]. Jacobson, M.P., Pincus, D.L., Rapp, C.S., Day, T.J.F., Honig, B., Shaw, D.E., Friesner, R.A., A Hierarchical Approach to All-Atom Protein Loop Prediction, Proteins Struct. Funct. Bioinforma., 2004, 55: 351–367.
  • [31]. PubChem National Library of Medicine National Center for Biotechnology Information Available online: https://pubchem.ncbi.nlm.nih.gov/
APA emirik m (2021). In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. , 809 - 816. 10.31202/ecjse.894617
Chicago emirik mustafa In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. (2021): 809 - 816. 10.31202/ecjse.894617
MLA emirik mustafa In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. , 2021, ss.809 - 816. 10.31202/ecjse.894617
AMA emirik m In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. . 2021; 809 - 816. 10.31202/ecjse.894617
Vancouver emirik m In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. . 2021; 809 - 816. 10.31202/ecjse.894617
IEEE emirik m "In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease." , ss.809 - 816, 2021. 10.31202/ecjse.894617
ISNAD emirik, mustafa. "In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease". (2021), 809-816. https://doi.org/10.31202/ecjse.894617
APA emirik m (2021). In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. El-Cezerî Journal of Science and Engineering, 8(2), 809 - 816. 10.31202/ecjse.894617
Chicago emirik mustafa In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. El-Cezerî Journal of Science and Engineering 8, no.2 (2021): 809 - 816. 10.31202/ecjse.894617
MLA emirik mustafa In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. El-Cezerî Journal of Science and Engineering, vol.8, no.2, 2021, ss.809 - 816. 10.31202/ecjse.894617
AMA emirik m In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. El-Cezerî Journal of Science and Engineering. 2021; 8(2): 809 - 816. 10.31202/ecjse.894617
Vancouver emirik m In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease. El-Cezerî Journal of Science and Engineering. 2021; 8(2): 809 - 816. 10.31202/ecjse.894617
IEEE emirik m "In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease." El-Cezerî Journal of Science and Engineering, 8, ss.809 - 816, 2021. 10.31202/ecjse.894617
ISNAD emirik, mustafa. "In Silico Inhibition Potential of Artemisinin Derivatives Against SARS-CoV-2 Main Protease". El-Cezerî Journal of Science and Engineering 8/2 (2021), 809-816. https://doi.org/10.31202/ecjse.894617