Yıl: 2022 Cilt: 2 Sayı: 2 Sayfa Aralığı: 95 - 113 Metin Dili: Türkçe DOI: 10.29228/JIENS.63353 İndeks Tarihi: 02-05-2023

Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar

Öz:
Günümüzde polimerik malzemeler kolay işlenebilmeleri ve düşük ağırlıklı yapıları nedeniyle her alanda kullanılmaktadır. Bununla birlikte, hidrokarbon esaslı olduklarından dolayı yanıcıdırlar, çoğu zaman zehirli gaz üretirler. Polimer sektöründe, alev geciktirici polimer malzemelerin gelişimi polimerlerin kullanımlarının arttırılması için büyük bir öneme sahiptir. Bu derleme, alev geciktirici polimer malzemelerin bilgi ve teknolojisindeki son gelişmeleri incelemeye, sınıflandırmaya ve alev geciktirici özellikleri üzerinde gerçekleştirilen kalitatif ve kantitatif analizleri göstermeye odaklanmaktadır. Ayrıca, alev geciktirici katkı maddesi olarak halojenlerin yerini tutan fosfor ve azot elementlerine ilave olarak hidroksit içerikli inorganik alev geciktiriciler açıklanmaktadır. Son olarak, alev geciktirici katkı maddelerinin zamanla ortamdan salınması nedeniyle polimer matrisi ile homojen olarak karışabilirliği sınırlı olduğundan ve mekanik özellikler üzerinde olumsuz etkisinden dolayı yeni bir strateji olan “yanmaz polimerler” konusuna değinmektedir.
Anahtar Kelime: Yanmazlık Alev geciktirici katkı Fosfor Yanmaz polimer

Current approaches to the synthesis of flame retardant polymers

Öz:
Polymeric materials are used in every field due to their easy processing and low-weight structure. However, because they are hydrocarbon-based, they are flammable, often producing toxic gases. Therefore, in the polymer industry, the development of flame retardant polymer materials is of great importance to increase the use of polymers. This review focuses on reviewing and classifying the latest developments in the knowledge and technology of flame retardant polymer materials and showing the qualitative and quantitative analyzes performed on their flame retardant properties. In addition, inorganic flame retardants containing hydroxide are disclosed, in addition to phosphorus and nitrogen elements, which replace halogens as flame retardant additives. Finally, it touches on the topic of “anti-flammable polymers,” a new strategy.
Anahtar Kelime: Non-flammability Flame retardant additive Phosphorus Anti-flammable polymer

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] Lu S-Y, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Progress in Polymer Science 27 (8):1661-1712. https://doi.org/10.1016/S0079-6700(02)00018-7
  • [2] Sinha Ray S, Kuruma M (2020) Polymer combustion and flame retardancy, In: Halogen-Free Flame-Retardant polymers. Springer International Publishing ss 5-9.
  • [3] Gu L, Chen G, Yao Y (2014) Two novel phosphorus–nitrogen-containing halogen-free flame retardants of high performance for epoxy resin. Polymer Degradation and Stability 108:68-75. https://doi.org/10.1016/j.polymdegradstab.2014.05.030
  • [4] Lewin M (1998) Physical and chemical mechanisms of flame retarding of polymers. Fire Retardancy of Polymers: Elsevier, ss 3-32.
  • [5] Akdoğan E, Tarakçılar AR, Topcu M, Yurtseven R (2015) Alüminyum hidroksit ve magnezyum hidroksit katkısının termoplastik poliüretan malzemelerin mekanik özelliklerine etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 21 (8):376-380. https://doi.org/10.5505/pajes.2015.24572
  • [6] Vahabi H, Sonnier R, Ferry L (2015) Effects of ageing on the fire behaviour of flame retarded polymers: A review. Polymer International 64(3):313-328. https://doi.org/10.1002/pi.4841
  • [7] Vahabi H, Laoutid F, Mehrpouya M, Saeb MR, Dubois P (2021) Flame retardant polymer materials: An update and the future for 3D printing developments. Materials Science Engineering: R: Reports 144:100604. https://doi.org/10.1016/j.mser.2020.100604
  • [8] Mincheva R, Guemiza H, Hidan C, Moins S, Coulembier O, Dubois P, Laoutid F (2019) Development of inherently flame—retardant phosphorylated PLA by combination of ring-opening polymerization and reactive extrusion. Materials 13(1):13. https://doi.org/10.3390/ma13010013
  • [9] Eren T, Aşçı A (2015) Synthesis and characterization of phosphonate based polynorbornene polymers derived from romp (ring opening metathesis polymerization) method and investigation their flame retardant properties. Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi 33(4):615-625. https://eds.yildiz.edu.tr/sigma/
  • [10] Yıldırım S, Çelik E (2014) Alev Geçiktirici Huntit ve Hidromanyezit Nanopartikül Takviyeli Polimetrik Kompozit Kaplamalar. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 14 (3):387-393.
  • [11] Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR (2018) Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angewandte Chemie International Edition 57 (33):10450-10467. https://doi.org/10.1002/anie.201711735
  • [12] Katırcıoğlu-Bayel D (2018) Alev geciktirici mineral dolgu maddeleri. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 7 (3):1175-1179.
  • [13] Çakmakçı E, Güngör A (2013) Preparation and characterization of flame retardant and proton conducting boron phosphate/polyimide composites. Polymer Degradation and Stability 98 (5):927-933. https://doi.org/10.1016/j.polymdegradstab.2013.03.003
  • [14] Gao C, Wang L, Lei Z, Yang L, Xu X, Guo X (2017) Property of intrinsic flame retardant epoxy resin cured by functional magnesium organic composite salt and diethylenetriamine. Fire Materials 41 (2):180-192. https://doi.org/10.1002/fam.2377
  • [15] Weil ED, Zhu W, Patel N, Mukhopadhyay SM (1996) A systems approach to flame retardancy and comments on modes of action. Polymer Degradation and Stability 54 (2-3):125-136. https://doi.org/10.1016/S0141-3910(96)00036-5
  • [16] Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Carbon-family materials for flame retardant polymeric materials. Progress in Polymer Science 69:22-46. https://doi.org/10.1016/j.progpolymsci.2017.02.001
  • [17] Nelson GL (1995) Fire and polymers: An overview. Fire and Polymers II ss 1-26.
  • [18] Sinha Ray S, Kuruma M (2020) Flame-retardancy testing. In: Halogen-Free Flame-Retardant Polymers. Cham: Springer International Publishing ss 11-14.
  • [19] Weil ED, Patel NG, Said MM, Hirschler MM, Shakir S (1992) Oxygen index: Correlations to other fire tests. Fire and Materials 16 (4):159-167. https://doi.org/10.1002/fam.810160402
  • [20] Wan L, Deng C, Zhao Z-Y, Chen H, Wang Y-Z (2020) Flame retardation of natural rubber: strategy and recent progress. Polymers 12 (2):429. https://doi.org/10.3390/polym12020429
  • [21] Akkurt S (2007) Plastik malzeme bilimi teknolojisi ve kalıp tasarımı. Birsen Yayınevi, İstanbul.
  • [22] Erdem S (2008) Çatıda kullanılan polimer kökenli levhaların karşılaştırmalı analizi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İTÜ, İstanbul, Turkey.
  • [23] Lomakin SM, Zaikov GE (2003) Modern polymer flame retardancy. VSP Vol. 16.
  • [24] Öz MK (2006) Yanmaya karşı dirençli (FR) ve katyonik boyalarla boyanabilen (CD) polyester üretimi ve bu polyesterin elyaf prosesi. Doktora Tezi, Fen Bilimleri Enstitüsü, Çukurova Üniversitesi, Adana, Turkey.
  • [25] Marti J, Idelsohn SR, Oñate E (2018) A finite element model for the simulation of the UL-94 burning test. Fire Technology 54 (6):1783-1805. https://doi.org/10.1007/s10694-018-0769-0
  • [26] Morgan AB, Bundy M (2007) Cone calorimeter analysis of UL 94 V rated plastics. Fire Materials: An International Journal 31 (4):257-283. https://doi.org/10.1002/fam.937
  • [27] Group P (2020) https://www.pegotester.com/horizontal_and_vertical_flame_test_UL94.html. Erişim 26 Haziran 2022.
  • [28] Prime RB, Bair HE, Vyazovkin S, Gallagher PK, Riga A (2009) Thermogravimetric analysis (TGA). Thermal Analysis of Polymers: Fundamentals Applications ss 241-317.
  • [29] Kobal A (2017) Karakterizasyon teknikleri. malzeme üretim laboratuvarı II https://silo.tips/download/karakterizasyon-teknikleri-malzeme-retim-laboratuvar-ii. Erişim 26 Haziran 2022.
  • [30] Hüseyin A, Üreyen ME, Kılıç A, Sağlam AE, Demir A (2019) Güç tutuşur polipropilen polimeri ve lif uygulamalarinda son gelişmeler ve gelecek beklentileri, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 (2):609-632. https://doi.org/10.17482/uumfd.479415
  • [31] Mack AG (2004) Flame retardants, halogenated. In Kirk-Othmer Encyclopedia of Chemical Technology, (Ed.). https://doi.org/10.1002/0471238961.0801121516052020.a01.pub2
  • [32] Morose G (2006) An overview of alternatives to tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD). Lowell Center for Sustainable Production, University of Massachusetts, Lowell. http://sustainableproduction. org/downloads/AternativestoTBBPAandHBCD. pdf
  • [33] Kaya M, Oz D (1999) Mineral esaslı alev geciktirici ve duman bastına katkı maddeleri. Endüstriyel Hammaddeler Sempozyumu, İzmir, Türkiye, 14-15.
  • [34] Acton QA (2013) Heavy metals. Advances in Research and Application: 2013 Edition.
  • [35] Chen X, Jiao C, Wang Y (2009) Synergistic effects of iron powder on intumescent flame retardant polypropylene system. Express Polymer Letters 3 (6):359-365. https://doi.org/10.3144/expresspolymlett.2009.45
  • [36] Hollingbery L, Hull TR (2010) The fire retardant behaviour of huntite and hydromagnesite–A review. Polymer Degradation and Stability 95 (12):2213-2225. https://doi.org/10.1016/j.polymdegradstab.2010.08.019
  • [37] Aydın DY, Gürü M, Ayar B, Çakanyıldırım Ç (2016) Bor bileşiklerinin alev geciktirici ve yüksek sıcaklığa dayanıklı pigment olarak uygulanabilirliği. Journal of Boron 1 (1):33-39.
  • [38] Zhang G, Lin X, Zhang Q, Jiang K, Chen W, Han D (2020) Anti-flammability, mechanical and thermal properties of bio-based rigid polyurethane foams with the addition of flame retardants. RSC Advances 10 (53):32156-32161. https://doi.org/10.1039/D0RA06561G
  • [39] Morgan AB, Wilkie CA (2014) Non-halogenated flame retardant handbook. 1st Edition, Wiley-Scrivener, New Jersey, ABD.
  • [40] Le Bras M (2005) Fire retardancy of polymers: new applications of mineral fillers. Royal Society of Chemistry, Cambridge, UK.
  • [41] Murphy J (2001) Chapter 10-modifying specific properties. Flammability -flame retardants. In: J. Murphy, editor. Additives for Plastics Handbook (Second Edition). Amsterdam: Elsevier Science, ss 115-140.
  • [42] Zhang J, Hereid J, Hagen M, Bakirtzis D, Delichatsios MA, Fina A, Castrovinci A, Camino G, Samyn F, Bourbigot S (2009) Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Safety Journal 44 (4):504-513. https://doi.org/10.1016/j.firesaf.2008.10.005
  • [43] Chen X, Yu J, Guo S (2006) Structure and properties of polypropylene composites filled with magnesium hydroxide. Journal of Applied Polymer Science 102 (5):4943-4951. https://doi.org/10.1002/app.24938
  • [44] Ai L, Chen S, Zeng J, Yang L, Liu P (2019) Synergistic flame retardant effect of an intumescent flame retardant containing boron and magnesium hydroxide. ACS Omega 4 (2):3314-3321. https://doi.org/10.1021/acsomega.8b03333
  • [45] Dede M (2016) Dopo içeren monomerlerin sentezi, karakterizasyonu ve poliester, poliüretan formülasyonunda kullanılarak alev geciktirici özelliklerinin incelenmesi. Yüksek Lisans Tezi, YTÜ, Fen Bilimleri Enstitüsü, İstanbul.
  • [46] Horacek H, Grabner R (1996) Advantages of flame retardants based on nitrogen compounds. Polymer Degradation and Stability 54 (2-3):205-215. https://doi.org/10.1016/S0141-3910(96)00045-6
  • [47] Levchik SV, Weil ED (2008) New developments in flame retardancy of styrene thermoplastics and foams. Polymer international 57 (3):431-448. https://doi.org/10.1002/pi.2282
  • [48] Liang S, Neisius NM, Gaan S (2013) Recent developments in flame retardant polymeric coatings. Progress in Organic Coatings 76 (11):1642-1665. https://doi.org/10.1016/j.porgcoat.2013.07.014
  • [49] Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M, Dubois P (2009) New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Materials Science and Engineering: R: Reports 63 (3):100-125. https://doi.org/10.1016/j.mser.2008.09.002
  • [50] Deng C-L, Du S-L, Zhao J, Shen Z-Q, Deng C, Wang Y-Z (2014) An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polymer Degradation and Stability 108:97-107. https://doi.org/10.1016/j.polymdegradstab.2014.06.008
  • [51] Zhu ZM, Wang LX, Lin XB, Dong LP (2019) Synthesis of a novel phosphorus-nitrogen flame retardant and its application in epoxy resin. Polymer Degradation and Stability 169:108981. https://doi.org/10.1016/j.polymdegradstab.2019.108981
  • [52] Hu XP, Li WY, Wang YZ (2004) Synthesis and characterization of a novel nitrogen-containing flame retardant. J. Appl. Polym. Sci. 94 (4):1556-1561. https://doi.org/10.1002/app.20792
  • [53] Qian X, Song L, Bihe Y, Yu B, Shi Y, Hu Y, Yuen RKK (2014) Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Materials Chemistry and Physics 143 (3):1243-1252. https://doi.org/10.1016/j.matchemphys.2013.11.029
  • [54] Wang C, Wu Y, Li Y, Shao Q, Yan X, Han C, Wang Z, Liu Z, Guo Z (2018) Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym Adv. Technol. 29 (1):668-676. https://doi.org/10.1002/pat.4105
  • [55] Zheng T, Wang W, Liu Y (2021) A novel phosphorus nitrogen flame retardant for improving the flame retardancy of polyamide 6: Preparation, properties, and flame retardancy mechanism. Polymers for Advanced Technologies 32 (6):2508-2516. https://doi.org/10.1002/pat.5281
  • [56] Xie C, Zeng B, Gao H, Xu Y, Luo W, Liu X, Dai L (2014) Improving thermal and flame-retardant properties of epoxy resins by a novel reactive phosphorous-containing curing agent. Polymer Engineering & Science 54 (5):1192-1200. https://doi.org/10.1002/pen.23642
  • [57] Liu YL (2001) Flame-retardant epoxy resins from novel phosphorus-containing novolac. Polymer 42 (8):3445-3454. https://doi.org/10.1016/S0032-3861(00)00717-5
  • [58] Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR (2018) Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew Chem Int Ed Engl 57 (33):10450-10467. https://doi.org/10.1002/anie.201711735
  • [59] Stackman RW (1982) Phosphorus based additives for flame retardant polyester. 2. Polymeric phosphorus esters. Industrial & Engineering Chemistry Product Research and Development 21 (2):332-336. https://doi.org/10.1021/i300006a028
  • [60] Zhang S, Horrocks AR (2003) A review of flame retardant polypropylene fibres. Progress in Polymer Science 28 (11):1517-1538. https://doi.org/10.1016/j.progpolymsci.2003.09.001
  • [61] Guo W, Cai W, Wang D, Wang J, Zhu X, Fei B (2022) Halogen-free flame retarded poly (lactic acid) with an ısosorbide-derived polyphosphonate. Journal of Renewable Materials 10 (7):1875-1888. https://doi.org/10.32604/jrm.2022.018823
  • [62] Green J (1992) A review of phosphorus-containing flame retardants. Journal of Fire Sciences 10 (6):470-487. https://doi.org/10.1177/073490419201000602
  • [63] Rulev AY (2014) Recent advances in Michael addition of H-phosphonates. RSC Advances 4(49):26002-26012. https://doi.org/10.1039/C4RA04179H
  • [64] Salmeia KA, Gaan S (2015) An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications. Polymer Degradation and Stability 113:119-134. https://doi.org/10.1016/j.polymdegradstab.2014.12.014
  • [65] Hamciuc C, Vlad-Bubulac T, Serbezeanu D, Carja ID, Hamciuc E, Lisa G, Pérez VF (2016) Environmentally friendly fire-resistant epoxy resins based on a new oligophosphonate with high flame retardant efficiency. RSC Advances 6 (27):22764-22776. https://doi.org/10.1039/C5RA27451F
  • [66] Salmeia KA, Gooneie A, Simonetti P, Nazir R, Kaiser JP, Rippl A, Hirsch C, Lehner S, Rupper P, Hufenus R, Gaan S (2018) Comprehensive study on flame retardant polyesters from phosphorus additives. Polymer Degradation and Stability 155:22-34. https://doi.org/10.1016/j.polymdegradstab.2018.07.006
  • [67] Chi Z, Guo Z, Xu Z, Zhang M, Li M, Shang L, Ao Y (2020) A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism. Polymer Degradation and Stability 176:109151. https://doi.org/10.1016/j.polymdegradstab.2020.109151
  • [68] Chen L, Wang YZ (2010) Aryl polyphosphonates: useful halogen-free flame retardants for polymers. Materials 3(10):4746-4760. https://doi.org/10.3390/ma3104746
  • [69] Wang P, Chen L, Xiao H (2019) Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin. Journal of Analytical and Applied Pyrolysis 139:104-113. https://doi.org/10.1016/j.jaap.2019.01.015
  • [70] Ranganathan T, Zilberman J, Farris RJ, Coughlin EB, Emrick T (2006) Synthesis and characterization of halogen-free antiflammable polyphosphonates containing 4, 4 ‘-bishydroxydeoxybenzoin. Macromolecules 39(18):5974-5975. https://doi.org/10.1021/ma0614693
  • [71] Fiss BG, Hatherly L, Stein RS, Friščić T, Moores A (2019) Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustainable Chemistry & Engineering 7(8):7951-7959. https://doi.org/10.1021/acssuschemeng.9b00764
  • [72] Ménard R, Negrell-Guirao C, Ferry L, Sonnier R, David G (2014) Synthesis of biobased phosphate flame retardants: Characterization of flame retardancy on epoxy thermosets. Pure and Applied Chemistry 86(11):1637-1650. https://doi.org/10.1515/pac-2014-0703
  • [73] Vahabi H, Eterradossi O, Ferry L, Longuet C, Sonnier R, Lopez-Cuesta JM (2013) Polycarbonate nanocomposite with improved fire behavior, physical and psychophysical transparency. European Polymer Journal 49(2):319-327. https://doi.org/10.1016/j.eurpolymj.2012.10.031
  • [74] lşıksel E, Kahraman G, Ceren Süer N, Wang DY, Eren T (2019) Synthesis and characterization of phosphonate and aromatic based polynorbornene polymers derived from the ring opening metathesis polymerization method and investigation of their thermal properties. Journal of Applied Polymer Science 136(8): 47085. https://doi.org/10.1002/app.47085
  • [75] Turgut G, Işıksel E, Kahraman G, Eren T, Özkoç G (2018) Synthesis of phosphorus and phenyl based ROMP polymers and investigation of their effects on the thermomechanical and flammability properties of a polypropylene–IFR system. Journal of Applied Polymer Science 135(11):45998. https://doi.org/10.1002/app.45998
  • [76] Oktay B, Çakmakçi E (2017) DOPO tethered Diels Alder clickable reactive silica nanoparticles for bismaleimide containing flame retardant thiol-ene nanocomposite coatings. Polymer 131:132-142. https://doi.org/10.1016/j.polymer.2017.10.043
  • [77] Grubb J, Carosio F, Vasireddy M, Moncho S, Brothers EN, Hobbs CE (2018) Ring opening metathesis polymerization (ROMP) and thio-bromo “click” chemistry approach toward the preparation of flame-retardant polymers. Journal of Polymer Science Part A: Polymer Chemistry 56(6):645-652. https://doi.org/10.1002/pola.28939
  • [78] Fan S, Zhu C, Wu D, Wang X, Yu J, Li F (2020) Silicon-containing inherent flame-retardant polyamide 6 with anti-dripping via introducing ethylene glycol as the chain-linker and charring agent. Polymer Degradation and Stability 173:109080. https://doi.org/10.1016/j.polymdegradstab.2020.109080
  • [79] Shan F, Ohashi S, Erlichman A, Ishida H (2018) Non-flammable thiazole-functional monobenzoxazines: Synthesis, polymerization, thermal and thermomechanical properties, and flammability studies. Polymer 157:38-49. https://doi.org/10.1016/j.polymer.2018.09.061
  • [80] Wang X, Niu H, Huang J, Song L, Hu Y (2021) A desoxyanisoin-and furfurylamine-derived high-performance benzoxazine thermoset with high glass transition temperature and excellent anti-flammability. Polymer Degradation and Stability 189:109604. https://doi.org/10.1016/j.polymdegradstab.2021.109604
APA Cakir Yigit N (2022). Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. , 95 - 113. 10.29228/JIENS.63353
Chicago Cakir Yigit Nese Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. (2022): 95 - 113. 10.29228/JIENS.63353
MLA Cakir Yigit Nese Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. , 2022, ss.95 - 113. 10.29228/JIENS.63353
AMA Cakir Yigit N Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. . 2022; 95 - 113. 10.29228/JIENS.63353
Vancouver Cakir Yigit N Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. . 2022; 95 - 113. 10.29228/JIENS.63353
IEEE Cakir Yigit N "Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar." , ss.95 - 113, 2022. 10.29228/JIENS.63353
ISNAD Cakir Yigit, Nese. "Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar". (2022), 95-113. https://doi.org/10.29228/JIENS.63353
APA Cakir Yigit N (2022). Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. Journal of innovative engineering and natural science (Online), 2(2), 95 - 113. 10.29228/JIENS.63353
Chicago Cakir Yigit Nese Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. Journal of innovative engineering and natural science (Online) 2, no.2 (2022): 95 - 113. 10.29228/JIENS.63353
MLA Cakir Yigit Nese Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. Journal of innovative engineering and natural science (Online), vol.2, no.2, 2022, ss.95 - 113. 10.29228/JIENS.63353
AMA Cakir Yigit N Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. Journal of innovative engineering and natural science (Online). 2022; 2(2): 95 - 113. 10.29228/JIENS.63353
Vancouver Cakir Yigit N Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar. Journal of innovative engineering and natural science (Online). 2022; 2(2): 95 - 113. 10.29228/JIENS.63353
IEEE Cakir Yigit N "Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar." Journal of innovative engineering and natural science (Online), 2, ss.95 - 113, 2022. 10.29228/JIENS.63353
ISNAD Cakir Yigit, Nese. "Alev geciktirici polimerlerin sentezine yönelik güncel yaklaşımlar". Journal of innovative engineering and natural science (Online) 2/2 (2022), 95-113. https://doi.org/10.29228/JIENS.63353