Yıl: 2021 Cilt: 34 Sayı: 4 Sayfa Aralığı: 1107 - 1126 Metin Dili: İngilizce DOI: 10.35378/gujs.806591 İndeks Tarihi: 07-11-2022

Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid

Öz:
In this study, the effects of microchannel number, volume concentration, Reynolds number, and nanofluid type on heat transfer and flow characteristics in the heat sink consisting of trapezoidal microchannels are investigated numerically. Governing equations are solved by assuming three- dimensional, incompressible, steady and laminar flow. The channel material is chosen as copper, and a constant heat flux boundary condition is defined on the upper wall of heat sink. For two different nanofluids, CuO-water and Al2O3-water, investigated parameters are the number of trapezoidal channels (n=3-5) in the heat sink, Reynolds number (Re=200-1500), and volume concentration (=0-4%). Results show that using nanoparticles in base fluid causes to increase both heat transfer coefficient and pressure drop. Heat transfer coefficient increases with increasing number of trapezoidal cross-sectional channel in the heat sink, nanofluid volume concentration and Reynolds number. Pressure drop enhances with enhancing Reynolds number and microchannel number in the heat sink. The nanofluid type and volume concentration do not importantly affect the friction factor. According to the performance index, it is seen that adding CuO nanoparticles in water is convenient, but Al2O3 nanoparticles in water is not appropriate. It is observed that volume concentration for CuO-water nanofluid affects the thermal performance, but volume concentration for Al2O3-water nanofluid does not affect.
Anahtar Kelime: Nanofluid Heat transfer Microchannel Heat sink Numerical simulation

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Kaya, H., Ekiciler, R., Arslan, K., “CFD analysis of laminar forced convective heat transfer for TiO2/water nanofluid in a semi-circular cross-sectioned micro-channel”, Journal of Thermal Engineering, 5: 123-137, (2019).
  • [2] Kaya, H., Ekiciler, R., Arslan, K., “Entropy generation analysis of forced convection flow in a semi-circular shaped microchannel with TiO2/water nanofluid”, Heat Transfer Research, 50: 335- 348, (2019).
  • [3] Kumar, P., “Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure”, International Journal of Thermal Sciences, 136: 33-43, (2019).
  • [4] Vinoth, R., Kumar, D. S., “Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink”, International Communications in Heat and Mass Transfer, 87: 270-276, (2017).
  • [5] Vinoth, R., Kumar, D. S., “Experimental investigation on heat transfer characteristics of an oblique finned microchannel heat sink with different channel cross sections”, Heat and Mass Transfer, 54: 3809-3817, (2018).
  • [6] Ohadi, M., Choo, K., Dessiatoun, S., Cetegen, E., “Emerging applications of microchannels. In: Next generation microchannel heat exchangers”, SpringerBriefs in Applied Sciences and Technology, Springer, New York, (2013).
  • [7] Sheikhalipour, T., Abbassi, A., “Numerical analysis of nanofluid flow inside a trapezoidal microchannel different approaches”, Advanced Powder Technology. DOI: https://doi.org/10.1016/j.apt.2018.04.010, (2018).
  • [8] Sharma, D., Singh, P. P., Garg, H., “Comparative study of rectangular and trapezoidal microchannels using water and liquid metal”, Procedia Engineer, 51: 791-796, (2013).
  • [9] Wu, H. Y., Cheng, P., “An experimental study of convective heat transfer in silicon microchannels with different surface conditions”, International Journal of Heat and Mass Transfer, 46: 2547– 2556, (2003).
  • [10] Wu, H. Y., Cheng, P., “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios”, International Journal of Heat and Mass Transfer, 46: 2519-2525, (2003).
  • [11] Chein, R., Chuang, J., “Experimental microchannel heat sink performance studies using nanofluids”, International Journal of Thermal Sciences, 46: 57–66, (2007).
  • [12] Fani, B., Kalteh, M., Abbassi, A., “Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink”, Advanced Powder Technology, 26: 83-90, (2015).
  • [13] Li, J., Kleinstreuer, C., “Thermal performance of nanofluid flow in microchannels”, International Journal of Heat and Fluid Flow, 29: 1221–1232, (2008).
  • [14] Wu, X., Wu, H., Cheng, P., “Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels”, Journal of Micromechanics and Microengineering, 19: 105020, (2009).
  • [15] Li, J., Kleinstreuer, C., “Entropy generation analysis for nanofluid flow in microchannels”, Journal of Heat Transfer, 132: 122401, (2010).
  • [16] Mohammed, H. A., Gunnasegaran, P., Shuaib, N. H., “Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks”, International Communications in Heat and Mass Transfer, 38: 194–201, (2011).
  • [17] Singh, P. K., Harikrishna, P. V., Sundararajan, T., Das, S. K., “Experimental and numerical investigation into the heat transfer study of nanofluids in microchannel”, Journal of Heat Transfer -T ASME, 133: 121701, (2012).
  • [18] Fani, B., Abbassi, A., Kalteh, M., “Effect of nanoparticles size on thermal performance of nanofluid in a trapezoidal microchannel-heat-sink”, International Communications in Heat and Mass Transfer, 45: 155–161, (2013).
  • [19] Yang, Y. T., Tsai, K. T., Wang, Y. H., Lin, S. H., “Numerical study of microchannel heat sink performance using nanofluids”, International Communications in Heat and Mass Transfer, 57: 27- 35, (2014).
  • [20] Yang, Y. T., Wang, Y. H., Huang, B. Y., “Numerical optimization for nanofluid flow in microchannels using entropy generation minimization”, Numerical Heat Transfer Applications, 67: 571-588, (2015).
  • [21] Sheikhalipour, T., Abbassi, A., “Numerical investigation of nanofluid heat transfer inside trapezoidal microchannels using a novel dispersion model”, Advanced Powder Technology, 27: 1464-1472, (2016).
  • [22] Vinoth, R., Kumar, D. S., “Numerical study of inlet cross-section effect on oblique finned microchannel heat sink”, Thermal Science, 22: 2747-2757, (2018b).
  • [23] Bakhshi, H., Khodabandeh, E., Akbari, O., Toghraie, D., Joshaghani, M., “Investigation of laminar fluid flow and heat transfer of nanofluid in trapezoidal microchannel with different aspect ratios”, International Journal of Numerical Methods for Heat & Fluid Flow, 29: 1680-1698, (2018).
  • [24] Khodabandeh, E., Abbassi, A., “Performance optimization of water-Al2O3 nanofluid flow and heat transfer in trapezoidal cooling microchannel using constructal theory and two phase Eulerian- Lagrangian approach”, Powder Technology, 323: 103-114, (2018).
  • [25] Tran, N., Chang, Y. J., Wang, C. C., “Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of A2O3 and TiO2”, International Journal of Heat and Mass Transfer, 117: 787-798, (2018).
  • [26] Jaferian, V., Toghraie, D., Pourfattah, F., Akbari, O. A., Talebizadehsardari, P., “Numerical investigation of the effect of water/Al2O3 nanofluid on heat transfer in trapezoidal, sinusoidal and stepped microchannels”, International Journal of Numerical Methods for Heat & Fluid Flow, 30: 2439-2465, (2020).
  • [27] Incropera, F. P., DeWitt, D. P., Bergman, T. L., Lavine, A. S., “Principles of heat and mass transfer”, John Wiley and Sons Inc., Singapore, (2013).
  • [28] Koyuncuoglu, A., Jafari, R., Okutucu-Ozyurt, T., Kulah, H., “Heat transfer and pressure drop experiments on CMOS compatible microchannel heat sinks for monolithic chip cooling applications”, International Journal of Thermal Sciences, 56: 77-85, (2012).
  • [29] Kandlikar, S. G., Garimella, S., Li, D., Colin, S., King, M. R., “Heat transfer and fluid flow in minichannels and microchannels”, Elsevier, USA, (2006).
  • [30] Pakdaman, M. F., Akhavan-Behabadi, M. A., Razi, P., “An experimental investigation on thermo- physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes”, Experimental Thermal and Fluid Science, 40: 103–111, (2012).
  • [31] Ahmed, H. E., Yusoff, M. Z., Hawlader M. N. A., Ahmed M. I., Salman B. H., Kerbeetf A. Sh., “Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators”, International Journal of Heat and Mass Transfer, 105: 495-504, (2017).
  • [32] Boukerma, K., Kadja, M., “Convective heat transfer of Al2O3 and CuO nanofluids using various mixtures of water-ethylene glycol as base fluids”, Engineering, Technology & Applied Science Research, 7: 1496-1503, (2017).
APA ege f, TURGUT O, Elibol E (2021). Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. , 1107 - 1126. 10.35378/gujs.806591
Chicago ege faraz,TURGUT OGUZ,Elibol Emre Aşkın Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. (2021): 1107 - 1126. 10.35378/gujs.806591
MLA ege faraz,TURGUT OGUZ,Elibol Emre Aşkın Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. , 2021, ss.1107 - 1126. 10.35378/gujs.806591
AMA ege f,TURGUT O,Elibol E Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. . 2021; 1107 - 1126. 10.35378/gujs.806591
Vancouver ege f,TURGUT O,Elibol E Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. . 2021; 1107 - 1126. 10.35378/gujs.806591
IEEE ege f,TURGUT O,Elibol E "Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid." , ss.1107 - 1126, 2021. 10.35378/gujs.806591
ISNAD ege, faraz vd. "Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid". (2021), 1107-1126. https://doi.org/10.35378/gujs.806591
APA ege f, TURGUT O, Elibol E (2021). Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science, 34(4), 1107 - 1126. 10.35378/gujs.806591
Chicago ege faraz,TURGUT OGUZ,Elibol Emre Aşkın Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science 34, no.4 (2021): 1107 - 1126. 10.35378/gujs.806591
MLA ege faraz,TURGUT OGUZ,Elibol Emre Aşkın Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science, vol.34, no.4, 2021, ss.1107 - 1126. 10.35378/gujs.806591
AMA ege f,TURGUT O,Elibol E Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science. 2021; 34(4): 1107 - 1126. 10.35378/gujs.806591
Vancouver ege f,TURGUT O,Elibol E Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science. 2021; 34(4): 1107 - 1126. 10.35378/gujs.806591
IEEE ege f,TURGUT O,Elibol E "Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid." Gazi University Journal of Science, 34, ss.1107 - 1126, 2021. 10.35378/gujs.806591
ISNAD ege, faraz vd. "Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid". Gazi University Journal of Science 34/4 (2021), 1107-1126. https://doi.org/10.35378/gujs.806591