Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods

Yıl: 2022 Cilt: 46 Sayı: 4 Sayfa Aralığı: 1185 - 1198 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3426 İndeks Tarihi: 06-12-2022

Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods

Öz:
In this study, anticholinergic, antidiabetic, antioxidant and cytotoxic activities of Reseda lutea L. (R. lutea) were determined. Ethanol extracts of R. lutea (EERL) and water extract of R. lutea (WERL) were prepared for biochemical analysis. The antioxidant capacities of EERL and WERL were evaluated with 6 different methods. In addition, acetylcholinesterase (AChE), α-amylase and α-glycosidase enzyme inhibition by EERL were measured. According to the results, EERL exhibited high inhibition effects against α-amylase, α-glycosidase and AChE enzymes. The $IC_{50}$ values of EERL against AChE (2.21 μg/mL), α-glycosidase (1.38 μg/mL), and α-amylase (0.11 μg/mL) were determined. Also, high cytotoxic effect of EERL was observed on human lung cancer cell lines (A549) with an $IC_{50}$ value of 3.58 ± 1.10 μg/mL. The affinities of 7 kaempferol and isorhamnetin rhamnopyranoside molecules, previously isolated from R. lutea, for AChE, α-amylase and, α-glycosidase were determined by molecular docking studies. Molecular docking results supported the in vitro results of the study. The results showed that the aerial parts of R. lutea have effective antioxidant, anticholinergic, antidiabetic and cytotoxic activities. This research will form the basis for further studies about R. lutea usage for drug development.
Anahtar Kelime: Antioxidant activity cytotoxicity enzyme inhibition molecular docking Reseda lutea

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Gulcin I. Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology 2020; 651–715. doi: 10.1007/s00204-020-02689- 3
  • 2. Demir Y. Naphthoquinones, benzoquinones, and anthraquinones : Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Development Research 2020; 1–9. doi: 10.1002/ddr.21667
  • 3. Turan H, Demir C. Investigation of Lipid Peroxidation and Antioxidant Enzyme Activity in Sleep Apnea Patients. Natural Science and Discovery 2016; 2: 2–6. doi: 10.20863/nsd.77315
  • 4. Sailaja RP, Kalva S, Yerramilli A. Mamidi S. Free Radicals and Tissue Damage: Role of Antioxidants. Free Radicals and Antioxidants 2011; 1: 1–7. doi: 10.5530/ax.2011.4.2
  • 5. Gulcin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006; 217: 213–220. doi: 10.1016/j.tox.2005.09.011
  • 6. Gulcin İ, Alwasel SH. Metal ıons, metal chelators and metal chelating assay as antioxidant method. Processes 2022; 10. doi: 10.3390/pr10010132
  • 7. Radulovic NS, Zlatkovi DB, Ili T, Senerovi L, Nikodinovic-runic J. Cytotoxic effect of Reseda lutea L.: A case of forgotten remedy. Journal of Ethnopharmacology 2014; 153. 125–132. doi: 10.1016/j.jep.2014.01.034
  • 8. Park CH, Yeo HJ, Baskar TB, Park YE, Park JS et al. In Vitro Antioxidant and Antimicrobial Properties of Flower, Leaf , and Stem Extracts of Korean Mint. Antioxidants 2019; 8: 1–12. doi: 10.3390/antiox8030075
  • 9. Bursal E, Taslimi P, Gören AC, Gülçin İ. Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatalysis and Agricultural Biotechnology 2020; 28. doi: 10.1016/j.bcab.2020.101711
  • 10. Baghiani A, Boussoualim N, Trabsa H, Aouachria S. Arrar, L. In vivo free radical scavenging, Antihemolytic activity and antibacterial effects of Anchusa azurea extracts. International Journal of Medical Sciences 2013; 46: 1113–1118.
  • 11. Huang D, Boxin O.U, Prior RL. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry 2005; 53: 1841–1856. doi: 10.1021/jf030723c
  • 12. Bursal E, Aras A, Kılıç Ö, Taslimi P, Gören AC et al. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes. Journal of Food Biochemistry 2019; 43: 1–13. doi: 10.1111/jfbc.12776
  • 13. Das A, Banik NL, Ray SK. Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 2010; 116: 164–176. doi: 10.1002/cncr.24699
  • 14. Xiao J. Dietary flavonoid aglycones and their glycosides : Which show better biological significance ? Critical Reviews in Food Science and Nutrition 2017; 57: 1874–1905. doi: 10.1080/10408398.2015.1032400
  • 15. Moustafa SA. The resedaceae: a taxonomical revision of the family. Meded. Landbouwhogesch. Wageningen 1978; 78: 1–318.
  • 16. Asadi-samani M, Khaledi M, Khaledi F, Samarghandian S. Phytochemical Properties and Antibacterial Effects of Salvia multicaulis Vahl ., Euphorbia microsciadia Boiss., and Reseda lutea on Staphylococcus aureus and Acinetobacter baumanii. Jundishapur Journal of Natural Pharmaceutical Products 2019; 14: 6–11. doi: 10.5812/jjnpp.63640.Research
  • 17. Kazemi M. Essential Oil Composition of Reseda lutea from Iran. Chemistry of Natural Compounds 2013; 49: 551–553.
  • 18. Berrehal D, Khalfallah A, Kabouche A, Karioti A, Bilia AR et al. Flavononol Glycosides of Reseda arabica (Resedaceae). Records of Natural Products 2012; 4: 368–370.
  • 19. Abdalrahman KS, Güneş MG, Shomali N, İşgör BS, Yildirim Ö. Screening effects of methanol extracts of diplotaxis tenuifolia and reseda lutea on enzymatic antioxidant defense systems and aldose reductase activity. Turkish Journal of Pharmaceutical Sciences 2018; 15: 97–102. doi: 10.4274/tjps.82473
  • 20. Kızıltaş H, Küçüksolak M, Duman S, Bedіr E. Flavonol glycosides from Reseda lutea L. Phytochemistry Letters 2019; 30: 150–153. doi: 10.1016/j.phytol.2019.01.027
  • 21. Benmerache A, Berrehal D, Khalfallah A, Kabouche A, Semra Z et al. Antioxidant, antibacterial activities and flavonoids of Reseda phyteuma L. Der Pharmacia Lettre 2012; 4: 1863–1867.
  • 22. Noori M, Dehshiri MM, Ghorbani M. Investigation of leaf flavonoids of reseda (Tourn.) et L . (Resedaceae) members in Markazi Province. Iran Journal of Medicinal plants and By-product 2013; 171–176.
  • 23. Pagnotta E, Montaut S, Matteo R, Rollin P, Nuzillard JM et al. Glucosinolates in Reseda lutea L.: Distribution in plant tissues during flowering time. Biochemical Systematics and Ecology 2020; 90: 104043. doi: 10.1016/j.bse.2020.104043
  • 24. Silva dos Santos J, Gonçalves Cirino JP, de Oliveira Carvalho P, Ortega MM. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Frontiers in Pharmacology 2021; 11. doi: 10.3389/fphar.2020.565700
  • 25. Gulcin I, Tel AZ, Kirecci E. Antioxidant, antimicrobial, antifungal, and antiradical activities of Cyclotrichium Niveum (BOISS.) Manden and Scheng. International Journal of Food Properties 2008; 11: 450–471. doi: 10.1080/10942910701567364
  • 26. Yılmaz MA, Taslimi P, Kılıç Ö, Gülçin İ, Dey A et al. Unravelling the phenolic compound reserves, antioxidant and enzyme inhibitory activities of an endemic plant species, Achillea pseudoaleppica. Journal of Biomolecular Structure and Dynamics 2021; 1–12. doi: 10.1080/07391102.2021.2007792
  • 27. Köksal E, Gülçin I. Antioxidant activity of cauliflower (Brassica oleracea L.). Turkish Journal of Agriculture and Forestry 2008; 32: 65–78. doi: 10.3906/tar-0707-46
  • 28. Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions 2008; 174: 27–37. doi: 10.1016/j.cbi.2008.05.003
  • 29. Blois MS. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958; 181; 1199–1200.
  • 30. Kızıltaş H, Gören AC, Bingöl Z, Alwasel SH, Gülçin İ. Anticholinergic, antidiabetic and antioxidant activities of Ferula orientalis l. Determination of its polyphenol contents by lc-hrms. Records of Natural Products 2021; 15: 513–528. doi: 10.25135/rnp.236.21.02.1983
  • 31. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry 1996; 239: 70–76. doi: 10.1006/abio.1996.0292
  • 32. Bursal E, Yılmaz MA, Izol E, Türkan F, Atalar MN et al. Enzyme inhibitory function and phytochemical profile of Inula discoidea using in vitro and in silico methods. Biophysical Chemistry 2021; 277: 106629. doi: 10.1016/j.bpc.2021.106629
  • 33. Yamali C, Gül HI, Demir Y, Kazaz C, Gülçin I. Synthesis and bioactivities of 1-(4-hydroxyphenyl)-2-((heteroaryl)thio)ethanones as carbonic anhydrase I, II and acetylcholinesterase inhibitors. Turkish Journal of Chemistry 2020; 44: 1058–1067. doi: 10.3906/kim-2004-36
  • 34. Xiao Z, Storms R, Tsang A. A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Analytical Biochemistry 2006; 351: 146–148. doi: 10.1016/j.ab.2006.01.036
  • 35. Demir Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. Journal of Pharmacy and Pharmacology 2019; 71: 1576–1583. doi: 10.1111/jphp.13144
  • 36. Trott O, Olson AJ. Software News and Updates Gabedit—A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry 2009; 31: 456–461, doi: 10.1002/jcc
  • 37. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research 2015; 43: W443–W447. doi: 10.1093/nar/gkv315
  • 38. Çetinkaya Y, Göçer H, Menzek A, Gülçin I. Synthesis and antioxidant properties of (3,4-dihydroxyphenyl)(2,3,4- trihydroxyphenyl) methanone and its derivatives. Archiv der Pharmazie - Chemistry in Life Sciences 2012; 345: 323–334. doi: 10.1002/ardp.201100272
  • 39. Kedare S, Singh RP. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology 2011; 48: 412–422. doi: 10.1007/s13197-011-0251-1
  • 40. Bursal E, Aras A, Kılıç Ö, Buldurun K. Chemical constituent and radical scavenging antioxidant activity of Anthemis kotschyana Boiss. Natural Product Research 2021; 35: 4794–4797. doi: 10.1080/14786419.2020.1723089
  • 41. Kang HR, Kim HJ, Suh HJ, Kwon OO, Kim KS et al. Reactive oxygen species scavenging activities of naturally occurring colorants. Food Science and Biotechnology 2013; 22: 225–231. doi: 10.1007/s10068-013-0031-y
  • 42. MacDonald-Wicks LK, Wood LG, Garg ML. Methodology for the determination of biological antioxidant capacity in vitro: areview. Journal of the Science of Food and Agriculture 2006; 86: 2046–2056. doi: 10.1002/jsfa.2603
  • 43. Maher P, Hanneken A. Flavonoids protect retinal ganglion cells from oxidative stress-induced death. Investigative Opthalmology & Visual Science 2005; 46: 4796–4803. doi: 10.1167/iovs.05-0397
  • 44. Teng H, Chen L, Fang T, Yuan B, Lin Q. Rb2 inhibits α-glucosidase and regulates glucose metabolism by activating AMPK pathways in HepG2 cells. Journal of Functional Foods 2017; 28: 306–313. doi: 10.1016/j.jff.2016.10.033
  • 45. Torres-Naranjo M, Suárez A, Gilardoni G, Cartuche L, Flores P et al. Chemical constituents of Muehlenbeckia tamnifolia (Kunth) meisn (Polygonaceae) and Its in Vitro α-amilase and α-glucosidase inhibitory activities. Molecules 2016; 21: doi: 10.3390/molecules21111461
  • 46. Taslimi P, Köksal E, Gören AC, Bursal E, Aras A et al. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arabian Journal of Chemistry 2020; 13: 4528–4537. doi: 10.1016/j.arabjc.2019.10.002
  • 47. Bilginer S, Gul HI, Anil B, Demir Y, Gulcin I. Synthesis and in silico studies of triazene substituted sulfamerazine derivatives as acetylcholinesterase and carbonic anhydrases inhibitors. Archiv Der Pharmazie 2020; e2000243: 1–10. doi: 10.1002/ardp.202000243
  • 48. Mir RH, Shah AJ, Mohi-ud-din R, Pottoo FH, Dar MA et al. Natural Anti-inflammatory Compounds as Drug Candidates in Alzheimer’s Disease. Current Medicinal Chemistry 2020; 28: 4799–4825. doi: 10.2174/0929867327666200730213215
  • 49. Tugrak M, Gul HI, Demir Y, Levent S, Gulcin I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone-based benzenesulfonamides. Archiv Der Pharmazie 2021; 354: 1–11. doi: 10.1002/ardp.202000375
  • 50. ADO Definition And Description of diabetes other categories of. diabetes care 2009; 32: 62–67. doi: 10.2337/dc09-S062
  • 51. Sever B, Altıntop MD, Demir Y, Yılmaz N, Akalın Çiftçi G et al. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chemico-Biological Interactions 2021; 345: doi: 10.1016/j. cbi.2021.109576
  • 52. Sever B, Altıntop MD, Demir Y, Pekdoğan, M, Akalın Çiftçi G et al. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. ournal of Molecular Structure 2021; 1224: doi: 10.1016/j.molstruc.2020.129446
  • 53. Aloko S, Bello MO. The Role of Alkaloids in the Management of Diabetes Mellitus. In: Chen H., Zhang M. (eds) Structure and Health Effects of Natural Products on Diabetes Mellitus. Germany: Springer, 2021.
  • 54. Chandramohan G, Al-numair KS, Alsaif MA. Antidiabetic effect of kaempferol a flavonoid compound, on streptozotocin-induced diabetic rats with special reference to glycoprotein components. Progress in Nutrition 2015; 17: 50–57.
  • 55. Hadisaputri YE, Cahyana N, Muchtaridi M, Lesmana R, Rusdiana T et al. Apoptosis - mediated antiproliferation of A549 lung cancer cells mediated by Eugenia aquea leaf compound and its molecular interaction with caspase receptor in molecular docking simulation. Oncology Letters 2020; 3: 3551–3557. doi: 10.3892/ol.2020.11466
  • 56. Kim HJ, Park C, Han MH, Hong SH, Kim GY et al. Baicalein induces caspase-dependent apoptosis associated with the generation of ROS and the activation of AMPK in human lung carcinoma A549 Cells. Drug Development Research 2016; 77: 73–86. doi: 10.1002/ddr.21298
  • 57. Karthik G, Vijayakumar A, Natarajapillai S. Preliminary study on salubrious effect of syringic acıd on apoptosis in human lung carcinoma A549 cells and in silico analysis through docking studies. Asian Journal of Pharmaceutical and Clinical Research 2014; 7: 46–49.
  • 58. Antunes-ricardo M, Moreno-garcía BE, Gutiérrez-uribe JA, Aráiz-hernández D, Alvarez MM et al. Induction of Apoptosis in Colon Cancer Cells Treated with Isorhamnetin Glycosides from Opuntia Ficus - indica Pads. Plant Foods for Human Nutrition 2014; 69: 331– 336. doi: 10.1007/s11130-014-0438-5
  • 59. Wang I, Lin J. Induction of Apoptosis by Apigenin and Related Flavonoids Through Cytochrome c Release and Activation of Caspase-9 and Caspase-3 in Leukaemia HL-60 Cells. European Journal of Cancer 1999; 35: 1517–25.
  • 60. Khalil HE, Mohamed ME, Morsy MA, Kandeel M. Flavonoid and Phenolic Compounds from Carissa macrocarpa : Molecular Docking and Cytotoxicity Studies. Pharmacognosy Magazine 2018; 304–310. doi: 10.4103/pm.pm
APA kızıltaş h (2022). Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. , 1185 - 1198. 10.55730/1300-0527.3426
Chicago kızıltaş hatice Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. (2022): 1185 - 1198. 10.55730/1300-0527.3426
MLA kızıltaş hatice Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. , 2022, ss.1185 - 1198. 10.55730/1300-0527.3426
AMA kızıltaş h Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. . 2022; 1185 - 1198. 10.55730/1300-0527.3426
Vancouver kızıltaş h Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. . 2022; 1185 - 1198. 10.55730/1300-0527.3426
IEEE kızıltaş h "Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods." , ss.1185 - 1198, 2022. 10.55730/1300-0527.3426
ISNAD kızıltaş, hatice. "Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods". (2022), 1185-1198. https://doi.org/10.55730/1300-0527.3426
APA kızıltaş h (2022). Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. Turkish Journal of Chemistry, 46(4), 1185 - 1198. 10.55730/1300-0527.3426
Chicago kızıltaş hatice Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. Turkish Journal of Chemistry 46, no.4 (2022): 1185 - 1198. 10.55730/1300-0527.3426
MLA kızıltaş hatice Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. Turkish Journal of Chemistry, vol.46, no.4, 2022, ss.1185 - 1198. 10.55730/1300-0527.3426
AMA kızıltaş h Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. Turkish Journal of Chemistry. 2022; 46(4): 1185 - 1198. 10.55730/1300-0527.3426
Vancouver kızıltaş h Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. Turkish Journal of Chemistry. 2022; 46(4): 1185 - 1198. 10.55730/1300-0527.3426
IEEE kızıltaş h "Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods." Turkish Journal of Chemistry, 46, ss.1185 - 1198, 2022. 10.55730/1300-0527.3426
ISNAD kızıltaş, hatice. "Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods". Turkish Journal of Chemistry 46/4 (2022), 1185-1198. https://doi.org/10.55730/1300-0527.3426