Yıl: 2022 Cilt: 46 Sayı: 4 Sayfa Aralığı: 1291 - 1296 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3435 İndeks Tarihi: 06-12-2022

A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method

Öz:
The production methods of semiconductor nanomaterials with new shapes and different compositions form the basis for the creation of high-performance structures in numerous applications. Kesterite structured materials are among these inorganic semiconductors and are suggested to be promising energy materials for the future. In this study, quaternary $Ag_2MnSnS_4$ nanocrystalline rods have been successfully synthesized for the first time by the colloidal hot-injection synthesis route and well-organized rod-like nanocrystals (NCs) with lengths ranging from 200 to 350 nm and widths from 10 to 30 nm were obtained. For this structure, the $Ag_2MnSnS_4$ exhibits a semiconductor property with a band-gap of approximately 1.3 eV. The optical properties and band-gap values were determined by UV-Vis absorption spectrum and using Tauc Equation. It has been observed that the $Ag_2MnSnS_4$ structure acquired by the proposed colloidal synthesis method can be an alternative to the commonly used materials based on Cd and Pb.
Anahtar Kelime: $Ag_2MnSnS_4$ AMTS kesterite nanorod hot-injection

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Aslan E, Sarilmaz A, Yanalak G, Ozel SS, Ozel F et al. Transition metal–incorporated tungsten-based ternary refractory metal selenides (MWSex; M= Fe, Co, Ni, and Mn) as hydrogen evolution catalysts at soft interfaces. Materials Today Energy 2020; 18: 100510. doi: 10.1016/j.mtener.2020.100510
  • 2. Bree G, Geaney H, Stokes K, Ryan KM. Aligned copper zinc tin sulfide nanorods as lithium-ion battery anodes with high specific capacities. Journal Physical Chemistry C 2018; 122: 20090–20098. doi: 10.1021/acs.jpcc.8b05386
  • 3. Yu P, Zhang X, Chen Y, Ma Y. Solution-combustion synthesis of ε-MnO2 for supercapacitors. Materials Letters 2010; 64: 61–64. doi: 10.1016/j.matlet.2009.10.007
  • 4. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK et al. Device characteristics of CZTSSe thin film solar cells with 12.6% efficiency. Advanced Energy Materials 2014; 4: 1301465. doi: 10.1002/aenm.201301465
  • 5. Yıldırım, M, Kocyigit, A, Sarilmaz, A, Ozel SS, Kus M et al. Ternary CuCo2S4 Thiospinel Nanocrystal-Coated Photodiode with Improved Photoresponsivity and Acceptance Angles for Optoelectronic Applications. Journal of Electronic Materials 49, 949–958 (2020). doi: 10.1007/s11664-019-07841-z
  • 6. Coskun H, Aljabour A, De Luna P, Farka D, Greunz T et al. Biofunctionalized conductive polymers enable efficient CO2 electroreduction. Science Advances 2017; 3 (8): e1700686. doi: 10.1126/sciadv.1700686
  • 7. Coughlan C, Ryan KM. Complete study of the composition and shape evolution in the synthesis of Cu2ZnSnS4 (CZTS) semiconductor nanocrystals. CrystEngComm 2015; 17: 6914–6922. doi: 10.1039/C5CE00497G
  • 8. Fan FJ, Wu L, Gong M, Chen SY, Liu GY et al. Linearly arranged polytypic CZTSSe nanocrystals. Science Reports 2012; 2: 1–6. doi: 10.1038/srep00952
  • 9. Saha A, Figueroba A, Konstantatos G. Ag2ZnSnS4 Nanocrystals Expand the Availability of RoHS Compliant Colloidal Quantum Dots. Chemistry of Materials 2020; 32: 2148–2155. doi: 10.1021/acs.chemmater.9b05370
  • 10. Saha A, Konstantatos G. Ag2ZnSnS4–ZnS core–shell colloidal quantum dots: a near-infrared luminescent material based on environmentally friendly elements. Journal of Material Chemistry C 2021; 9: 5682–5688. doi: 10.1039/D1TC00421B
  • 11. Sarilmaz A, Ozel F. Synthesis of band-gap tunable earth-abundant CXTS (X= Mn+2, Co+2, Ni+2 and Zn+2) NCs: Toward a generalized synthesis strategy of quaternary chalcogenides. Journal of Alloys and Compounds 2019; 780: 518–522. doi: 10.1016/j.jallcom.2018.11.370
  • 12. Zhou YL, Zhou WH, Li M, Du YF, Wu S. “Hierarchical Cu2ZnSnS4 particles for a low-cost solar cell: morphology control and growth mechanism.” The Journal of Physical Chemistry C 2011; 115 (40): 19632-19639. doi: 10.1021/jp206728b
  • 13. Pietak K, Jastrzebski C, Zberecki K, Jastrzebski DJ, Paszkowicz W et al. Synthesis and structural characterization of Ag2ZnSnS4 crystals. Journal of Solid State Chemistry 2020; 290: 2–7. doi: 10.1016/j.jssc.2020.121467
  • 14. Kumar J, Ingole S. Optical phonons in pentanary compound (AgxCu1− x)2ZnSnS4 semiconductor: A raman study. Journal of Alloys and Compounds 2021; 865: 158113. doi: 10.1016/j.jallcom.2020.158113
  • 15. Delgado GE, Sierralta N, Quintero M, Quintero E, Moreno E et al. Synthesis, structural characterization and differential thermal analysis of the quaternary compound Ag2MnSnS4. Revista Mexicana de Fisica 2018; 64: 216–221.
  • 16. Friedrich D, Greil S, Block T, Heletta L, Pöttgen R et al. Synthesis and Characterization of Ag2MnSnS4, a New Diamond like Semiconductor. Zeitschrift für Anorganische und Allgemeine Chemie 2018; 644: 1707–1714. doi: 10.1002/zaac.201800142
  • 17. Singh A, Geaney H, Laffir F, Ryan KM. Colloidal Synthesis of Wurtzite Cu2ZnSnS4 NCs and Their Perpendicular Assembly. Journal of American Chemical Society 2012; 134(6): 2011–2014. doi: 10.1021/ja2112146
  • 18. Ha E, Lee LYS, Man HW, Tsang SCE, Wong KY. Morphology-controlled synthesis of Au/Cu2FeSnS4 core–shell nanostructures for plasmon- enhanced photocatalytic hydrogen generation. ACS Applied Materials Interfaces 2015; 7: 9072–9077. doi: 10.1021/acsami.5b00715
  • 19. Connor ST, Hsu C M, Weil BD, Aloni S, Cui Y. Phase transformation of biphasic Cu2S−CuInS2 to monophasic CuInS2 nanorods. Journal of American Chemical Society 2009; 131: 4962–4966. doi: 10.1021/ja809901u
  • 20. Kruszynska M, Borchert H, Parisi J, Kolny-Olesiak J. Synthesis and shape control of CuInS2 nanoparticles. Journal of American Chemical Society 2010; 132: 15976–15986. doi: 10.1021/ja103828f
  • 21. Zhang X, Xu Y, Pang C, Wang Y, Shen L et al. Insight into the crystal phase and shape evolution from monoclinic Cu1.94S to wurtzite Cu2ZnSnS4 nanocrystals. CrystEngComm 2018; 20: 2351–2356. doi: 10.1039/C8CE00048D
  • 22. Mkawi EM, Ibrahim K, Ali MKM, Mohamed AS. Dependence of copper concentration on the properties of Cu2ZnSnS4 thin films prepared by electrochemical method. International Journal of Electrochemical Science 2013; 8: 359–368.
  • 23. Himmrich M., Haeuseler H. Far infrared studies on stannite and wurtzstannite type compounds. Spectrochimica Acta Part A: Molecular Spectroscopy. 1991; 47(7), 933-942. doi: 10.1016/0584-8539(91)80283-O
  • 24. Ozel F, Aslan E, Istanbullu B, Akay O, Patir IH. Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2NiSnS4 and Cu2CoSnS4 nanocrystals. Applied Catalysis B: Environmental 2016; 198, 67-73. doi: 10.1016/j.apcatb.2016.05.053
  • 25. Friedrich D, Greil S, Block T, Heletta L, Pöttgen R et al. Synthesis and Characterization of Ag2MnSnS4, a New Diamond like Semiconductor. Zeitschrift für anorganische und allgemeine Chemie 2018; 644 (24): 1707-1714. doi: 10.1002/zaac.201800142
  • 26. Chen L, Deng H, Tao J, Cao H, Sun L et al. Strategic improvement of Cu2MnSnS4 films by two distinct post-annealing processes for constructing thin film solar cells. Acta Materialia 2016; 109, 1-7. doi: 10.1016/j.actamat.2016.02.057
  • 27. Chen L, Deng H, Tao J, Cao H, Huang L et al. Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique. RSC advances 2015; 5 (102): 84295-84302. doi: 10.1039/C5RA14595C
  • 28. Le T.L, Guillemet-Fritsch S, Dufour P, Tenailleau C. Microstructural and optical properties of spinel oxide MxCo2 - XMnO4 (M = Ni, Zn or Cu; 0 < x < 1) thin films prepared by inorganic polycondensation and dip-coating methods. Thin Solid Films 2016; 612: 14–21. doi: 10.1016/j.tsf.2016.05.030
  • 29. Sarilmaz A, Yanalak G, Aslan E, Akyildiz H, Patir IH et al. Ternary and quaternary thiospinel nanocrystals with adjustable compositions: effects of Band-Gaps and nanostructures on Visible-Light-Driven photocatalytic H2 evolution. Materials Today Energy 2020; 16: 100413. doi: 10.1016/j.mtener.2020.100413
  • 30. Ji S, Shi T, Qiu X, Zhang J, Xu G et al. A route to phase controllable Cu2ZnSn(S1−xSex) 4 nanocrystals with tunable energy bands. Science Reports 2013; 3: 1–7. doi: 10.1038/srep02733
  • 31. Su Z, Yan C, Tang D, Sun K, Han Z et al. Fabrication of Cu2ZnSnS4 nanowires and nanotubes based on AAO templates. CrystEngComm 2012; 14: 782–785. doi: 10.1039/C2CE06236D
  • 32. Yıldırım M, Ozel F, Tugluoglu N, Yuksel OF, Kus M. Optical characterization of Cu2ZnSnSe4-xSx nanocrystals thin film. Journal of Alloys Compounds 2016; 666: 144–152. doi: 10.1016/j.jallcom.2016.01.107
APA ÖZEL S, Akay S, ÖZEL f (2022). A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. , 1291 - 1296. 10.55730/1300-0527.3435
Chicago ÖZEL Sultan Süleyman,Akay Serdar,ÖZEL faruk A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. (2022): 1291 - 1296. 10.55730/1300-0527.3435
MLA ÖZEL Sultan Süleyman,Akay Serdar,ÖZEL faruk A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. , 2022, ss.1291 - 1296. 10.55730/1300-0527.3435
AMA ÖZEL S,Akay S,ÖZEL f A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. . 2022; 1291 - 1296. 10.55730/1300-0527.3435
Vancouver ÖZEL S,Akay S,ÖZEL f A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. . 2022; 1291 - 1296. 10.55730/1300-0527.3435
IEEE ÖZEL S,Akay S,ÖZEL f "A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method." , ss.1291 - 1296, 2022. 10.55730/1300-0527.3435
ISNAD ÖZEL, Sultan Süleyman vd. "A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method". (2022), 1291-1296. https://doi.org/10.55730/1300-0527.3435
APA ÖZEL S, Akay S, ÖZEL f (2022). A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. Turkish Journal of Chemistry, 46(4), 1291 - 1296. 10.55730/1300-0527.3435
Chicago ÖZEL Sultan Süleyman,Akay Serdar,ÖZEL faruk A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. Turkish Journal of Chemistry 46, no.4 (2022): 1291 - 1296. 10.55730/1300-0527.3435
MLA ÖZEL Sultan Süleyman,Akay Serdar,ÖZEL faruk A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. Turkish Journal of Chemistry, vol.46, no.4, 2022, ss.1291 - 1296. 10.55730/1300-0527.3435
AMA ÖZEL S,Akay S,ÖZEL f A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. Turkish Journal of Chemistry. 2022; 46(4): 1291 - 1296. 10.55730/1300-0527.3435
Vancouver ÖZEL S,Akay S,ÖZEL f A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method. Turkish Journal of Chemistry. 2022; 46(4): 1291 - 1296. 10.55730/1300-0527.3435
IEEE ÖZEL S,Akay S,ÖZEL f "A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method." Turkish Journal of Chemistry, 46, ss.1291 - 1296, 2022. 10.55730/1300-0527.3435
ISNAD ÖZEL, Sultan Süleyman vd. "A facile synthesis of $Ag_2MnSnS_4$ nanorods through colloidal method". Turkish Journal of Chemistry 46/4 (2022), 1291-1296. https://doi.org/10.55730/1300-0527.3435