Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1429 - 1449 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3449 İndeks Tarihi: 06-12-2022

Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability

Öz:
Nanosuspensions (NS) are one of the new generation drug carrier forms developed to overcome the deficiencies of drugs with poor water solubility or insolubility and are considered to be one of the most successful approaches to formulate compounds in recent years. Boron nitride (BN) is insoluble in water and chemically more stable than carbon, it offers better biological superiority although the application of carbon structures in the biomedical field has increased in recent years. Chitosan is a polymer with excellent processability and biocompatibility thanks to its high dielectric constant. In addition, chitosan has a high affinity for metal ions. This study aims to combine BN and chitosan, which have unique properties, using six different surfactants, and to investigate their long- term stability for the use of both in medicine. In this direction, 24 different BN NS formulations were prepared. The 6th and 12th months’ stability of these formulations were studied at +25 °C, 60% relative humidity, and +4 °C. Also, the prepared formulations were evaluated by cell viability test and examined in terms of toxicity. FTIR spectra of the formulations were taken and their morphologies were characterized by SEM. Prepared NSs with Poloxamer 407 + Tween (N1 - N6) were found to be the most stable formulations for 6 and 12 months both at +4 °C and +25 °C. The fact that BN has a negative zeta potential and chitosan has a high positive zeta potential in formulations is very important in terms of their potential antimicrobial activities. The low cellular toxicity of BN NSs, especially chitosan-coated BN NSs, at higher concentrations shows that they have enormous potential in the diagnosis and treatment of diseases with boron-based compounds in the future.
Anahtar Kelime: Boron nitride chitosan nanosuspension physical stability cytotoxicity

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2020; 25 (1): 112. doi: 10.3390/molecules25010112
  • 2. Kim SH, Lee ES, Lee KT, Hong ST. Stability properties and antioxidant activity of curcumin nanosuspensions in emulsion systems. CyTA- Journal of Food 2021; 19(1): 40-48. doi: 10.1080/19476337.2020.1852315
  • 3. Maddiboyina B, Jhawat V, Desu PK, Gandhi S, Nakkala RK et al. Formulation and evaluation of thermosensitive flurbiprofen in situ nano gel for the ocular delivery. Journal of Biomaterials Science, Polymer Edition 2021; 32(12): 1584-1597. doi: 10.1080/09205063.2021.1927460
  • 4. Manca ML, Lai F, Pireddu R, Valenti D, Schlich M et al. Impact of nanosizing on dermal delivery and antioxidant activity of quercetin nanocrystals. Journal of Drug Delivery Science and Technology 2020; 55: 101482. doi: 10.1016/j.jddst.2019.101482
  • 5. Permana AD, McCrudden MTC, Donnelly RF. Enhanced intradermal delivery of nanosuspensions of antifilariasis drugs using dissolving microneedles: A proof of concept study. Pharmaceutics 2019; 11(7): 346. doi: 10.3390/pharmaceutics11070346
  • 6. Karakucuk A, Tort S, Han S, Oktay AN, Celebi N. Etodolac nanosuspension based gel for enhanced dermal delivery: in vitro and in vivo evaluation. Journal of Microencapsulation 2021; 38(4): 218-232. doi: 10.1080/02652048.2021.1895344
  • 7. Merlo A, Mokkapati VRSS, Pandit S, Mijakovic I. Boron nitride nanomaterials: Biocompatibility and bio-applications. Biomaterials science 2018; 6(9): 2298-2311. doi: 10.1039/C8BM00516H
  • 8. Ali F, Hosmane NS, Zhu Y. Boron chemistry for medical applications. Molecules 2020; 25(4): 828. doi: 10.3390/molecules25040828
  • 9. Emanet M, Sen Ö, Çulha Taşkın İ, Çulha M. Synthesis, functionalization, and bioapplications of two-dimensional boron nitride nanomaterials. Frontiers in Bioengineering and Biotechnology 2019; 7: 363. doi: 10.3389/fbioe.2019.00363
  • 10. Zhang H, Chen S, Zhi C, Yamazaki T, Hanagata N. Chitosan-coated boron nitride nanospheres enhance delivery of CpG oligodeoxynucleotides and induction of cytokines. International Journal of Nanomedicine 2013; 8: 1783-1793. doi: 10.2147/IJN.S43251
  • 11. Kıvanç M, Barutca B, Koparal AT, Göncü Y, Bostancı SH et al. Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Materials Science and Engineering: C 2018; 91: 115-124. doi: 10.1016/j.msec.2018.05.028
  • 12. Zhu Y, Hosmane NS. Nanostructured boron compounds for cancer therapy. Pure and Applied Chemistry 2018; 90(4): 653-663. doi: 10.1515/pac-2017-0903
  • 13. Ferreira TH, de Oliveira Freitas LB, Fernandes RS, dos Santos VM, Resende JM et al. Boron nitride nanotube-CREKA peptide as an effective target system to metastatic breast cancer. Journal of Pharmaceutical Investigation 2020; 50(5): 469-480. doi: 10.1007/s40005-019- 00467-7
  • 14. Jia Y, Ajayi TD, Xu C. Dielectric properties of polymer derived ceramic reinforced with boron nitride nanotubes. Journal of the American Ceramic Society 2020; 103(10): 5731-5742. doi: 10.1111/jace.17301
  • 15. Ciofani G, Raffa V, Menciassi A, Cuschieri A. Boron nitride nanotubes: An innovative tool for nanomedicine. Nano Today 2009; 4(1): 8-10. doi: 10.1016/j.nantod.2008.09.001
  • 16. Shareef SNM, Chidambaram K, Pasha SKK. Structure, morphology and dielectric properties of hexagonal boron nitride nanoparticles reinforced biopolymer nanocomposites. Polymer-Plastics Technology and Materials 2019; 58(11): 1210-1225. doi: 10.1080/03602559.2018.1542726
  • 17. Zameer S, Ali J, Vohora D, Najmi AK, Akhtar M. Development, optimisation and evaluation of chitosan nanoparticles of alendronate against Alzheimer’s disease in intracerebroventricular streptozotocin model for brain delivery. Journal of Drug Targeting 2021; 29(2): 199-216. doi: 10.1080/1061186X.2020.1817041
  • 18. Sashiwa H, Aiba SI. Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science 2004; 29(9): 887-908. doi: 10.1016/j.progpolymsci.2004.04.001
  • 19. Babel S, Kurniawan TA. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004; 54(7): 951-967. doi: 10.1016/j.chemosphere.2003.10.001
  • 20. Hirano S. Chitin and chitosan as novel biotechnological materials. Polymer International 1999; 48(8): 732-734. doi: 10.1002/(SICI)1097- 0126(199908)48:8<732::AID-PI211>3.0.CO;2-U
  • 21. Takai K, Ohtsuka T, Senda Y, Nakao M, Yamamoto K et al. Antibacterial properties of antimicrobial finished textile products. Microbiology and Immunology 2002; 46(2): 75-81. doi: 10.1111/j.1348-0421.2002.tb02661.x
  • 22. Duke SO, Baerson SR, Dayan FE, Rimando AM, Scheffler BE et al. United States Department of Agriculture–Agricultural Research Service research on natural products for pest management. Pest Management Science 2003; 59(6 7): 708-717. doi: 10.1002/ps.633
  • 23. Kurita K. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science 2001; 26(9): 1921-1971. doi: 10.1016/ S0079-6700(01)00007-7
  • 24. Qiu H, Si Z, Luo Y, Feng P, Wu X et al. The mechanisms and the applications of antibacterial polymers in surface modification on medical devices. Frontiers in Bioengineering and Biotechnology 2020; 8: 910. doi: 10.3389/fbioe.2020.00910
  • 25. Ahmad A, Wei Y, Syed F, Tahir K, Rehman AU et al. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis 2017; 102: 133-142. doi: 10.1016/j.micpath.2016.11.030
  • 26. Sahu BP, Das MK. Nanoprecipitation with sonication for enhancement of oral bioavailability of furosemide. Acta Poloniae Pharmaceutica- Drug Research 2014; 71: 129-137.
  • 27. Koca M, Özakar E, Sevinç Özakar R. Synthesis of triiodoaniline, preparation of nanosuspensions, in vitro characterization and investigation of radiocontrast properties. Journal of Faculty of Pharmacy of Ankara University 2021; 45(2): 264-283 (in Turkish with an abstract in English). doi: 10.33483/jfpau.811737
  • 28. Koca M, Sevinç Özakar R, Özakar E, Sade R, Pirimoğlu RB et al. Preparation and characterization of nanosuspensions of triiodoaniline derivative new contrast agent, and investigation into its cytotoxicity and contrast properties. Iranian Journal of Pharmaceutical Research, 2022. 21(1): 1-19. doi: 10.5812/ijpr.e123824
  • 29. Ibrahim AH, Ibrahim HM, Ismael HR, Samy AM. Optimization and evaluation of lyophilized fenofibrate nanoparticles with enhanced oral bioavailability and efficacy. Pharmaceutical Development and Technology 2018; 23(4): 358-369. doi: 10.1080/10837450.2017.1295065
  • 30. Silva NHCS, Mota JP, de Almeida TS, Carvalho JPF, Silvestre AJD et al. Topical drug delivery systems based on bacterial nanocellulose: accelerated stability testing. International Journal of Molecular Sciences 2020; 21(4): 1262. doi: 10.3390/ijms21041262
  • 31. Ferreira LMB, dos Santos AM, Boni FI, dos Santos KC, Robusti LMG et al. Design of chitosan-based particle systems: A review of the physicochemical foundations for tailored properties. Carbohydrate Polymers 2020; 250: 116968. doi: 0.1016/j.carbpol.2020.116968
  • 32. Csaba N, Köping-Höggård M, Alonso MJ. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. International Journal of Pharmaceutics 2009; 382(1-2): 205-214. doi: 10.1016/j.ijpharm.2009.07.028
  • 33. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces 2005; 44(2-3): 65-73. doi: 0.1016/j.colsurfb.2005.06.001
  • 34. Gjoseva S, Geskovski N, Sazdovska SD, Popeski-Dimovski R, Petruševski G et al. Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydrate Polymers 2018; 186: 260-272. doi: 10.1016/j.carbpol.2018.01.043
  • 35. Hu B, Pan C, Sun Y, Hou Z, Ye H et al. Optimization of fabrication parameters to produce chitosan- tripolyphosphate nanoparticles for delivery of tea catechins. Journal of Agricultural and Food Chemistry, 2008. 56(16): p. 7451-7458. doi: 0.1021/jf801111c
  • 36. Cooper DL, Harirforoosh S. Design and optimization of PLGA-based diclofenac loaded nanoparticles. PloS One 2014; 9(1): e87326. doi: 10.1371/journal.pone.0087326
  • 37. Filipović N, Ušjak D, Milenković MT, Zheng K, Boccaccini AR et al. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Frontiers in Bioengineering and Biotechnology 2021; 8: 624621. doi: 10.3389/ fbioe.2020.624621
  • 38. Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters. 2018; 13(1): 339-351. doi: 10.1186/s11671-018-2728-6
  • 39. Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. Beilstein Journal of Nanotechnology 2020; 11(1): 338-353. doi: 10.3762/bjnano.11.25
  • 40. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ et al. The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences of the USA. 2008; 105(33): 11613-11618. doi: 10.1073/pnas.0801763105
  • 41. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine 2012; 7: 5577-5591. doi: 10.2147/IJN.S36111
  • 42. Hühn D, Kantner K, Geidel C, Brandholt S, Cock ID et al. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 2013; 7(4): 3253-3263. doi: 10.1021/nn3059295
  • 43. Schrade A, Mailänder V, Ritz S, Landfester K, Ziener U. Surface roughness and charge influence the uptake of nanoparticles: Fluorescently labeled pickering type versus surfactant stabilized nanoparticles. Macromolecular Bioscience 2012; 12(11): 1459-1471. doi: 10.1002/ mabi.201200166
  • 44. Xiao K, Li Y, Luo J, Lee JS, Xiao W et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011; 32(13): 3435-3446. doi: 10.1016/j.biomaterials.2011.01.021
  • 45. Junghanns J-UAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. International Journal of Nanomedicine 2008; 3(3): 295-310. doi: 10.2147/ijn.s595
  • 46. Li M, Azad M, Davé R, Bilgili E. Nanomilling of drugs for bioavailability enhancement: A holistic formulation-process perspective. Pharmaceutics 2016; 8(2): 17. doi: 10.3390/pharmaceutics8020017
  • 47. Shah R, Soni T, Shah U, Suhagia BN, Patel MN et al. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity. Journal of Biomaterials Science, Polymer Edition 2021; 32(7): 833-857. doi: 10.1080/09205063.2020.1870378
  • 48. Sharma C, Desai MA, Patel SR. Effect of surfactants and polymers on morphology and particle size of telmisartan in ultrasound-assisted anti-solvent crystallization. Chemical Papers 2019; 73(7): 1685-1694. doi: 10.1007/s11696-019-00720-1
  • 49. Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering Gram- positive and Gram-negative bacteria. Journal of Antimicrobial Chemotherapy 2001; 48(1): 7-13. doi: 10.1093/jac/48.1.7
  • 50. Yao J, Cui B, Zhao X, Wang Y, Zeng Z et al. Preparation, characterization, and evaluation of azoxystrobin nanosuspension produced by wet media milling. Applied Nanoscience 2018; 8(3): 297-307. doi: 10.1007/s13204-018-0745-5
  • 51. Ahmed TA. Preparation of finasteride capsules-loaded drug nanoparticles: Formulation, optimization, in vitro, and pharmacokinetic evaluation. International Journal of Nanomedicine 2016; 11: 515-527. doi: 10.2147/IJN.S98080
  • 52. Yurtdaş-Kırımlıoğlu G. Development and characterization of lyophilized cefpodoxime proxetil-Pluronic® F127/polyvinylpyrrolidone K30 solid dispersions with improved dissolution and enhanced antibacterial activity. Pharmaceutical Development and Technology 2021; 26(4): 476-489. doi: 10.1080/10837450.2021.1889584
  • 53. Sonvico F, Cagnani A, Rossi A, Motta S, Di Bari MT et al. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. International Journal of Pharmaceutics 2006; 324(1): 67-73. doi: 10.1016/j.ijpharm.2006.06.036
  • 54. Omar Zaki SS, Ibrahim MN, Katas H. Particle size affects concentration-dependent cytotoxicity of chitosan nanoparticles towards mouse hematopoietic stem cells. Journal of Nanotechnology 2015; 2015: 919658. doi: 10.1155/2015/919658
  • 55. Bruinsmann FA, Pigana S, Aguirre T, Souto GD, Pereira GG et al. Chitosan-coated nanoparticles: Effect of chitosan molecular weight on nasal transmucosal delivery. Pharmaceutics 2019; 11(2): 86. doi: 10.3390/pharmaceutics11020086
  • 56. Budhian A, Siegel SJ, Winey KI. Haloperidol-loaded PLGA nanoparticles: Systematic study of particle size and drug content. International Journal of Pharmaceutics 2007; 336(2): 367-375. doi: 10.1016/j.ijpharm.2006.11.061
  • 57. Gao Y, Qian S, Zhang J. Physicochemical and pharmacokinetic characterization of a spray-dried cefpodoxime proxetil nanosuspension. Chemical and Pharmaceutical Bulletin 2010; 58(7): 912-917. doi: 10.1248/cpb.58.912
  • 58. Yan LY, Poon YF, Chan-Park MB, Chen Y, Zhang Q. Individually dispersing single-walled carbon nanotubes with novel neutral pH water- soluble chitosan derivatives. The Journal of Physical Chemistry C 2008; 112(20): 7579-7587. doi: 10.1021/jp711039s
  • 59. Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R. Generic approach for dispersing single-walled carbon nanotubes: The strength of a weak interaction. Langmuir 2004; 20(15): 6085-6088. doi: 10.1021/la049344j
  • 60. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA et al. Cell viability assays. Assay Guidance Manual, 2016.
  • 61. Tolosa L, Donato MT, Gomez-Lechon MJ. General cytotoxicity assessment by means of the MTT assay. Methods in Molecular Biology 2015; 1250: 333-348. doi: 10.1007/978-1-4939-2074-7_26
  • 62. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harbor Protocols 2018; 2018(6). doi: 10.1101/ pdb.prot095505
  • 63. Kim J, Nafiujjaman M, Nurunnabi M, Lim S, Lee YK, Park HK. Effects of polymer-coated boron nitrides with increased hemorheological compatibility on human erythrocytes and blood coagulation. Clin Hemorheol Microcirc. 2018; 70(3): 241-256. doi: 10.3233/CH-170307
  • 64. Augustine J, Cheung T, Gies V, Boughton J, Chen M et al. Assessing size-dependent cytotoxicity of boron nitride nanotubes using a novel cardiomyocyte AFM assay. Nanoscale Advances 2019; 1(5): 1914-1923. doi: 10.1039/C9NA00104B
  • 65. Ciofani G, Del Turco S, Rocca A, de Vito G, Cappello V et al. Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine 2014; 9(6): 773-788. doi: 10.2217/nnm.14.25
  • 66. Ciofani G, Danti S, D’Alessandro D, Moscato S, Menciassi A. Assessing cytotoxicity of boron nitride nanotubes: Interference with the MTT assay. Biochemical and Biophysical Research Communications 2010; 394(2): 405-411. doi: 10.1016/j.bbrc.2010.03.035
  • 67. Kisku, S.K. and Swain, S.K. Synthesis and Characterization of Chitosan/Boron Nitride Composites. Journal of The American Ceramic Society. 2012; 95: 2753-2757. doi: 10.1111/j.1551-2916.2012.05140.x
  • 68. Jacobson KH, Gunsolus IL, Kuech TR, Troiano JM, Melby ES et al. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environmental Science &Technology 2015; 49(17): 10642-10650. doi: 10.1021/acs.est.5b01841
  • 69. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology 2017; 15(1): 65. doi: 10.1186/s12951-017-0308-z
APA ÖZAKAR E, Bingöl M, ÖZAKAR R (2022). Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. , 1429 - 1449. 10.55730/1300-0527.3449
Chicago ÖZAKAR Emrah Özakar,Bingöl Mehmet Semih,ÖZAKAR Rukiye Sevinç Özakar Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. (2022): 1429 - 1449. 10.55730/1300-0527.3449
MLA ÖZAKAR Emrah Özakar,Bingöl Mehmet Semih,ÖZAKAR Rukiye Sevinç Özakar Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. , 2022, ss.1429 - 1449. 10.55730/1300-0527.3449
AMA ÖZAKAR E,Bingöl M,ÖZAKAR R Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. . 2022; 1429 - 1449. 10.55730/1300-0527.3449
Vancouver ÖZAKAR E,Bingöl M,ÖZAKAR R Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. . 2022; 1429 - 1449. 10.55730/1300-0527.3449
IEEE ÖZAKAR E,Bingöl M,ÖZAKAR R "Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability." , ss.1429 - 1449, 2022. 10.55730/1300-0527.3449
ISNAD ÖZAKAR, Emrah Özakar vd. "Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability". (2022), 1429-1449. https://doi.org/10.55730/1300-0527.3449
APA ÖZAKAR E, Bingöl M, ÖZAKAR R (2022). Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. Turkish Journal of Chemistry, 46(5), 1429 - 1449. 10.55730/1300-0527.3449
Chicago ÖZAKAR Emrah Özakar,Bingöl Mehmet Semih,ÖZAKAR Rukiye Sevinç Özakar Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. Turkish Journal of Chemistry 46, no.5 (2022): 1429 - 1449. 10.55730/1300-0527.3449
MLA ÖZAKAR Emrah Özakar,Bingöl Mehmet Semih,ÖZAKAR Rukiye Sevinç Özakar Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1429 - 1449. 10.55730/1300-0527.3449
AMA ÖZAKAR E,Bingöl M,ÖZAKAR R Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. Turkish Journal of Chemistry. 2022; 46(5): 1429 - 1449. 10.55730/1300-0527.3449
Vancouver ÖZAKAR E,Bingöl M,ÖZAKAR R Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability. Turkish Journal of Chemistry. 2022; 46(5): 1429 - 1449. 10.55730/1300-0527.3449
IEEE ÖZAKAR E,Bingöl M,ÖZAKAR R "Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability." Turkish Journal of Chemistry, 46, ss.1429 - 1449, 2022. 10.55730/1300-0527.3449
ISNAD ÖZAKAR, Emrah Özakar vd. "Investigation of boron nanosized particles prepared with various surfactants and chitosan in terms of physical stability and cell viability". Turkish Journal of Chemistry 46/5 (2022), 1429-1449. https://doi.org/10.55730/1300-0527.3449