Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1702 - 1709 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3473 İndeks Tarihi: 07-12-2022

The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites

Öz:
This study focuses on the improvement in fire performance, and flame retardancy (FR) properties of chopped basalt fiber- reinforced acrylonitrile-butadiene-styrene (ABS) composites. For this purpose, different amounts of aluminum diethyl phosphinate (AlPi) compound (5, 10, and 15 wt%) were incorporated in the composites. The FR properties of the composites were examined via limiting oxygen index (LOI), UL-94 standard, and mass loss calorimeter tests. Thermogravimetric analysis was carried out to analyze the decomposition behavior of the composites. SEM inspection was also performed to examine the char surfaces of the composites. The results and findings showed that the introduction of AlPi compound into the composite structure leads to promotion in the char yield and improves the fire performance of the ABS matrix. As the added amount of AlPi into the composite increased, the LOI value of the composite increased. The addition of 15 wt% AlPi resulted in a UL-94 rating of V1 and the LOI value of 31.4%.
Anahtar Kelime: Acrylonitrile-butadiene-styrene basalt fiber aluminum diethyl phosphinate composite flame retardancy fire performance

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Yi L, Jiangsong Y, Xufu C. Application of a novel halogen-free intumescent flame retardant for acrylonitrile-butadiene-styrene. Journal of Applied Polymer Science 2012; 124 (2): 1475 – 1482. doi: 10.1002/app.35153
  • 2. Wu N, Li X. Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polymer Degradation Stability 2014; 105: 265 – 276. doi: 10.1016/j.polymdegradstab.2014.04.011
  • 3. He M, Zhang D, Guo J, Wu B. Dynamic mechanical properties, thermal, mechanical properties and morphology of long glass fiber- reinforced thermoplastic polyurethane/acrylonitrile-butadiene-styrene composites. Journal of Thermoplastic Composite Materials 2016; 29 (3): 425 – 439. doi: 10.1177/0892705713518813
  • 4. Zhao G, Pan Z, Lu C, Cai X. Halogen-free intumescent flame retardant acrylonitrile-butadiene-styrene/poly(ethylene terephthalate) blends. Journal of Applied Polymer Science 2010; 118 (3): 1589 – 1597. doi: 10.1002/app.32537
  • 5. Wu N, Xiu Z. Surface microencapsulation modification of aluminum hypophosphite and improved flame retardancy and mechanical properties of flame-retardant acrylonitrile-butadiene-styrene composites. RSC Advances 2015; 5: 49143 – 49152. doi: 10.1039/C5RA02308D
  • 6. Lu C, Liu L, Chen N, Wang X, Yang D et al. Influence of clay dispersion on flame retardancy of ABS/PA6/APP blends. Polymer Degradation Stability 2015; 114: 16 – 29. doi: 10.1016/j.polymdegradstab.2015.01.024
  • 7. Wu N, Lang S. Flame retardancy and toughness modification of flame retardant polycarbonate/acrylonitrile-butadiene-styrene/AHP composites. Polymer Degradation Stability 2016; 123: 26 – 35. doi: 10.1016/j.polymdegradstab.2015.11.007
  • 8. Wu N, Xiu Z, Du J. Preparation of microencapsulated aluminum hypophosphite and flame retardancy and mechanical properties of flame- retardant ABS composites. Journal of Applied Polymer Science 2017; 134 (33): 45008. doi: 10.1002/app.45008
  • 9. Realinho V, Haurie L, Formosa J, Velasco JI. Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinate in acrylonitrile-butadiene-styrene. Polymer Degradation Stability 2018; 155: 208 – 219. doi: 10.1016/j. polymdegradstab.2018.07.022
  • 10. Hu D, Zhou Q, Zhou K. Combined effects of layered nanofillers and intumescent flame retardant on thermal and fire behavior of ABS resin. Journal of Applied Polymer Science 2019; 136 (46): 48220. doi: 10.1002/app.48220
  • 11. Yang Y, Luo H, Cao X, Zhou F, Kong W et al. The synergistic effects of a novel intumescent flame-retardant poly-(4-nitrophenoxy)- phosphazene and ammonium polyphosphate on ABS systems. Journal of Thermal Analysis and Calorimetry 2019; 137: 65–77. doi: 10.1007/s10973-018-7934-z
  • 12. Wang J, Cai XF. Synergistic effect of a novel charring agent with ammonium polyphosphate on flame retardancy and thermal degradation of acrylonitrile-butadiene-styrene copolymer. Polymer International 2012; 61 (5): 703 – 710. doi: 10.1002/pi.3225
  • 13. Ge LL, Duan HJ, Zhang XG, Chen C, Tang JH et al. Synergistic effect of ammonium polyphosphate and expandable graphite on flame- retardant properties of acrylonitrile-butadiene-styrene. Journal of Applied Polymer Science 2012; 126 (4): 1337 – 1343. doi: 10.1002/ app.36997
  • 14. Yin HQ, Yuan DD, Cai XF. Red phosphorus acts as second acid source to form a novel intumescent-contractive flame-retardant system on ABS. Journal of Thermal Analysis and Calorimetry 2013; 111: 499 – 506. doi: 10.1007/s10973-012-2536-7
  • 15. Yin HQ, Yuan DD, Cai XF. The high efficiency two stage intumescent-contractive flame retardant on ABS. Polymer Degradation Stability 2013; 98: 288 – 296. doi: 10.1016/j.polymdegradstab.2012.09.013
  • 16. Yi J, Liu Y, Cai X. The synergistic effect of adjuvant on the intumescent flame-retardant ABS with a novel charring agent. Journal of Thermal Analysis and Calorimetry 2013; 113: 753 – 761. doi: 10.1007/s10973-012-2802-8
  • 17. Attia NF, Hassan MA, Nour MA, Geckeler KE. Flame-retardant materials: Synergistic effect of halloysite nanotubes on the flammability properties of acrylonitrile-butadiene-styrene composites. Polymer International 2014; 63 (7): 1168 – 1173. doi: 10.1002/pi.4653
  • 18. Cao X, Yang Y, Luo H, Cai X. High efficiency intumescent flame retardancy between Hexakis (4-nitrophenoxy) cyclotriphosphazene and ammonium polyphosphate on ABS. Polymer Degradation Stability 2017; 143: 259 – 265. doi: 10.1016/j.polymdegradstab.2017.07.022
  • 19. Bee ST, Lim KS, Sin LT, Ratnam CT, Bee SL et al. Interactive effect of ammonium polyphosphate and montmorillonite on enhancing flame retardancy of polycarbonate/acrylonitrile butadiene styrene composites. Iranian Polymer Journal 2018; 27: 899 – 911. doi: 10.1007/ s13726-018-0664-z
  • 20. Zhao W, Li B, Xu M. Effect of phosphorus compounds on flame retardancy and thermal degradation of polycarbonate and acrylonitrile- butadiene-styrene. Journal of Macromolecular Science Part B Physics 2012; 51 (11): 2141 – 2156. doi: 10.1080/00222348.2012.665778
  • 21. Threepopnatkul P, Krachang T, Kulsetthanchalee C. Phosphate derivative flame retardants on properties of pineapple leaf fiber/ABS composites. Polymers and Polymer Composites 2014; 22 (7): 591–597. doi: 10.1177/096739111402200702
  • 22. Hoang DQ, Kim W, An H, Kim J. Flame retardancies of novel organo-phosphorus flame retardants based on DOPO derivatives when applied to ABS. Macromolecular Research 2015; 23 (5): 442 – 448. doi: 10.1007/s13233-015-3058-5
  • 23. Wang Z, Yonggang L, Huijuan M, Wenpeng S, Tao L et al. Novel phosphorus-nitrogen-silicon copolymers with double-decker silsesquioxane in the main chain and their flame retardancy application in PC/ABS. Fire and Materials 2018; 42 (8): 946 – 957. doi: 10.1002/fam.2649
  • 24. Song W, Zhang W, Li Y, Ma H, Lin T et al. Construction of novel silicon-phosphorus linear polymers with DDSQ and DOPO derivatives for effective flame retardancy of PC/ABS. Fire and Materials 2019; 43 (6): 685–693. doi: 10.1002/fam.2720
  • 25. Despinasse MC, Schartel B. Influence of the structure of aryl phosphates on the flame retardancy of polycarbonate/acrylonitrile-butadiene- styrene. Polymer Degradation Stability 2012; 97 (12): 2571 – 2580. doi: 10.1016/j.polymdegradstab.2012.07.005
  • 26. Wang W, Zhao G, Wu X, Li X, Wang C. Investigation on phosphorus halogen-free flame-retardancy systems in short glass fiber-reinforced PC/ABS composites under rapid thermal cycle molding process condition. Polymer Composites 2015; 36 (9): 1653 – 1663. doi: 10.1002/ pc.23075
  • 27. Hu X, Guo Y, Chen L, Wang X, Li L et al. A novel polymeric intumescent flame retardant Synthesis, thermal degradation mechanism and application in ABS copolymer. Polymer Degradation Stability 2012; 97 (9): 1772 – 1778. doi: 10.1016/j.polymdegradstab.2012.06.009
  • 28. Yang X, Wang H, Liu X, Liu, J. Synthesis of a novel aluminium salt of nitrogen-containing alkylphosphinate with high char formation to flame retard acrylonitrile–butadiene–styrene. Royal Society open science 2020; 7 (9): 200800. doi: 10.1098/rsos.200800
  • 29. Yuan Z, Wen H, Liu Y, Wang Q. Synergy between piperazine pyrophosphate and aluminum diethylphosphinate in flame retarded acrylonitrile- butadiene-styrene copolymer. Polymer Degradation and Stability 2021; 190: 109639. doi: 10.1016/j.polymdegradstab.2021.109639
  • 30. Ding Y, Guo L, Yang J, Li Y, Cao Z et al. Functionalisation of multiwalled carbon nanotubes with melamine phosphate and their influence on morphology, thermal stability, flame retardancy and mechanical properties of ABS. Plastics, Rubber and Composites 2021; 50 (2): 92 – 103. doi: 10.1080/14658011.2020.1840200
  • 31. Casu A, Camino G, De Giorgi M, Flath D, Laudi A et al. Effect of glass fibres and fire retardant on the combustion behaviour of composites, glass fibres-poly(butylene terephthalate). Fire and Materials 1998; 22 (1): 7 – 14. doi: 10.1002/(SICI)1099-1018(199801/02)22:1<7::AID- FAM623>3.0.CO;2-3
  • 32. Wittek T, Tanimoto T. Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres. Express Polymer Letters 2008; 2 (11): 810 – 822. doi: 10.3144/expresspolymlett.2008.94
  • 33. Wu Q, Chi K, Wu Y, Lee S. Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Materials & Design 2014; 60: 334 – 342. doi: 10.1016/j.matdes.2014.04.010
  • 34. Yang W, Jia Z, Chen Y, Zhang Y, Si J et al. Carbon nanotube reinforced polylactide/basalt fiber composites containing aluminium hypophosphite: Thermal degradation, flame retardancy and mechanical properties. RSC Advances 2015; 5 (128): 105869 – 105879. doi: 10.1039/C5RA18606D
  • 35. Mazur K, Kuciel S, Salasinska K. Mechanical, fire, and smoke behaviour of hybrid composites based on polyamide 6 with basalt/carbon fibres. Journal of Composite Materials 2019; 53 (28 – 30): 3979 – 3991. doi: 10.1177/0021998319853015
  • 36. Dreyer C, Motoc DL. Reaction-to-fire parameters of CE/epoxy blend-based CF/FF and BF/FF hybrid composites. Journal of Thermal Analysis and Calorimetry 2020; 142 (2): 661 - 669. doi: 10.1007/s10973-020-09359-7
  • 37. Wang J, Shi H, Zhu P, Wei Y, Wei P et al. Effect of natural basalt fiber for EVA composites with nickel alginate-brucite based flame retardant on improving fire safety and mechanical properties. Polymers for Advanced Technologies 2020; 31 (4): 713 – 721. doi: 10.1002/pat.4807
  • 38. Yao D, Yin G, Bi Q, Yin X, Wang N et al. Basalt fiber modified ethylene vinyl acetate/magnesium hydroxide composites with balanced flame retardancy and improved mechanical properties. Polymers 2020; 12 (9): 2107. doi: 10.3390/polym12092107
  • 39. Wang S, Zhong J, Gu Y, Li G, Cui J. Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites. Polymer Composites 2020; 41 (10): 4181 – 4191. doi: 10.1002/pc.25702
  • 40. Guo Y, Zhou M, Yin GZ, Kalali E, Wang N et al. Basalt Fiber-Based Flame Retardant Epoxy Composites: Preparation, Thermal Properties, and Flame Retardancy. Materials 2021; 14 (4): 902. doi: 10.3390/ma14040902
  • 41. Arslan C, Dogan M. The effects of fiber silane modification on the mechanical performance of chopped basalt fiber/ABS composites. Journal of Thermoplastic Composite Materials 2019; 33 (11): 1449 – 1465. doi: 10.1177/0892705719829515
  • 42. Yang S, Castilleja JR, Barrera EV, Lozano K. Thermal analysis of an acrylonitrile-butadiene-styrene/SWNT composite. Polymer Degradation Stability 2004; 83 (3): 383 – 388. doi: 10.1016/j.polymdegradstab.2003.08.002
  • 43. Suzuki M, Wilkie CA. The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polymer Degradation Stability 1995; 47 (2): 217 – 221. doi: 10.1016/0141-3910(94)00122-O
  • 44. Dong D, Tasaka S, Aikawa S, Kamiya S, Inagaki N et al. Thermal degradation of acrylonitrile-butadiene-styrene terpolymer in bean oil. Polymer Degradation Stability 2001; 73 (2): 319 – 326. doi: 10.1016/S0141-3910(01)00093-3
  • 45. Weng Z, Wang J, Senthil T, Wu L. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design 2016; 102: 276 – 283. doi: 10.1016/j.matdes.2016.04.045
  • 46. Braun U, Schartel B, Fichera MA, Jäger C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polymer Degradation Stability 2007; 92 (8): 1528 – 1545. doi: 10.1016/j.polymdegradstab.2007.05.007
  • 47. Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass- fibre-reinforced poly(1,4-butylene terephthalate). Macromolecular Materials and Engineering 2008; 293 (3): 206 – 217. doi: 10.1002/ mame.200700330
  • 48. Orhan T, Isitman NA, Hacaloglu J, Kaynak C. Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly(methyl methacrylate). Polymer Degradation Stability 2011; 96 (10): 1780 – 1787. doi: 10.1016/j. polymdegradstab.2011.07.019
  • 49. Zhao CS, Huang FL, Xiong WC, Wang YZ. A novel halogen-free flame retardant for glass-fiber-reinforced poly(ethylene terephthalate). Polymer Degradation Stability 2008; 93 (6): 1188 – 1193. doi: 10.1016/j.polymdegradstab.2008.03.010
  • 50. İmamoğlu T, Yağci Y. Photocuring of acrylate oligomers in the presence of vinyl phosphonic acids as a flame retarding monomer and the properties of the cured films. Turkish Journal of Chemistry 2001; 25 (1): 1 – 9. https://journals.tubitak.gov.tr/chem/vol25/iss1/1
  • 51. Faghihi K. New Flame-Retardant Poly (ester-imide)s Containing Phosphine Oxide Moieties in the Main Chain: Synthesis and Properties. Turkish Journal of Chemistry 2008; 32 (6): 663 – 671. https://journals.tubitak.gov.tr/chem/vol32/iss6/2
APA ARSLAN C, Doğan M (2022). The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. , 1702 - 1709. 10.55730/1300-0527.3473
Chicago ARSLAN Cagrialp,Doğan Mehmet The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. (2022): 1702 - 1709. 10.55730/1300-0527.3473
MLA ARSLAN Cagrialp,Doğan Mehmet The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. , 2022, ss.1702 - 1709. 10.55730/1300-0527.3473
AMA ARSLAN C,Doğan M The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. . 2022; 1702 - 1709. 10.55730/1300-0527.3473
Vancouver ARSLAN C,Doğan M The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. . 2022; 1702 - 1709. 10.55730/1300-0527.3473
IEEE ARSLAN C,Doğan M "The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites." , ss.1702 - 1709, 2022. 10.55730/1300-0527.3473
ISNAD ARSLAN, Cagrialp - Doğan, Mehmet. "The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites". (2022), 1702-1709. https://doi.org/10.55730/1300-0527.3473
APA ARSLAN C, Doğan M (2022). The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. Turkish Journal of Chemistry, 46(5), 1702 - 1709. 10.55730/1300-0527.3473
Chicago ARSLAN Cagrialp,Doğan Mehmet The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. Turkish Journal of Chemistry 46, no.5 (2022): 1702 - 1709. 10.55730/1300-0527.3473
MLA ARSLAN Cagrialp,Doğan Mehmet The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1702 - 1709. 10.55730/1300-0527.3473
AMA ARSLAN C,Doğan M The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. Turkish Journal of Chemistry. 2022; 46(5): 1702 - 1709. 10.55730/1300-0527.3473
Vancouver ARSLAN C,Doğan M The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites. Turkish Journal of Chemistry. 2022; 46(5): 1702 - 1709. 10.55730/1300-0527.3473
IEEE ARSLAN C,Doğan M "The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites." Turkish Journal of Chemistry, 46, ss.1702 - 1709, 2022. 10.55730/1300-0527.3473
ISNAD ARSLAN, Cagrialp - Doğan, Mehmet. "The effect of a phosphorus-based FR on the fire performance and flammability properties of basalt fiber-reinforced acrylonitrile-butadiene-styrene composites". Turkish Journal of Chemistry 46/5 (2022), 1702-1709. https://doi.org/10.55730/1300-0527.3473