Yıl: 2022 Cilt: 31 Sayı: 6 Sayfa Aralığı: 563 - 578 Metin Dili: İngilizce DOI: 10.55730/1300-0985.1820 İndeks Tarihi: 02-01-2023

Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey)

Öz:
Red soils as the weathering products in Muğla Polje (SW Turkey) show different occurrences either on hard and permeable limestone (terra rossa (TRs)) or within the matrix of transported sediments (alluvium-derived soils (ALs), alluvium-derived soils specifically from clastics (ALsc), paleosol (Pls), and colluvium-derived soils (CLs)). The purpose of this study is to unlock the effect of weathering on hard carbonate rocks and dynamic young land surfaces (alluvium and colluvium) in Muğla Polje for the first time in terms of mineralogical and geochemical compositions. TRs, the soils of more stable environments are clayey while ALs and CLs as being the soils of dynamic environments have variable textures from silty clay loam to sandy loam. All soils share low CEC property (13–16.8 meq/100 g for TRs; 2–11.6 meq/100g for ALs and CLs). Nonclay components of the samples include quartz, feldspars, calcite, dolomite, and mica minerals. Hematite is observed as the main reddening agent for all samples. Illite, kaolinite, chlorite, and vermiculite are the clay minerals of the fine fractions. TRs are characterized by low intensity of salinization (<1) and calcification (<2), high degree of clayeyness (>0.3), and intense hydrolysis due to very high CIA and CIA-K (84%–88% and 89%–93%) under very high MAP $(1230–1285mm year^{–1})$. ALs and CLs are the soils with moderate to high calcification (>2), low salinization (<1), high base amounts (70–522; 73–141), low intensity of leaching developed under low CIA and CIA-K (3%–22% and 10%–16%) due to low MAP $(<270 and <197mm year^{–1})$. Samples of Pls and ALsc are also qualified with low salinization (<1), low calcification (<2), and intense leaching (>0.2) associated with very high CIA and CIA-K (>80%, >90%) under very high MAP $(>1260 mm year^{–1})$. Therefore, this study suggests that TRs are the results of intense weathering on carbonate rocks of more stable environments while ALs and CLs are the products of weathering of much lower intensity on alluvium and colluvium. As more mature soils of the polje, TRs also contribute to the matrix of the transported sediments in the lowlands of the polje.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aktimur HT, Özmutaf M, Sarıaslan M, Keçer M, Sönmez M et al. (1996). Muğla İlinin (Merkez İlçe) Arazi Kullanım Potansiyeli, MTA Raporu, Rapor No: 9853.
  • Altunbaş S, Sarı M (2009). The relationships of iron contents between Red Mediterranean Soils and its parent material in Antalya Province, Turkey. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 22 (1): 15-21.
  • ASTM D7928-17 (2017). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, ASTM International, West Conshohocken, PA.
  • Atalay Z (1980). Muğla-Yatağan ve yakın dolayı karasal Neojen’inin stratigrafi araştırması. Türkiye Jeoloji Kurumu Bülteni 23: 93- 99.
  • Atalay I (1997). Red Mediterranean soils in some karstic regions of Taurus mountains, Turkey. Catena 28 (3-4): 247-260. https:// doi.org/10.1016/S0341-8162(96)00041-0
  • Aydınalp C, Cresser MS (2008). Red Soils under Mediterranean Type of Climate: their properties use and productivity. Bulgarian Journal of Agricultural Science 14 (6): 576-582.
  • Aydinalp C, Fitzpatrick E (2009). Pedogenesis and characteristics of the Terra Rossas developed on different physiographic position and their classification. Agrociencia 43 (2): 97-105.
  • Bassett WA (1959). The origin of vermiculite deposit at Libby, Montana. American Mineralogist, 44 (3-4): 282-299.
  • Boero V, Schwertmann U (1989). Iron oxide mineralogy of terra rossa and its genetic implications. Geoderma 44 (4): 319-327. https://doi.org/10.1016/0016-7061(89)90039-6
  • Boero V, Premoli A, Melis P, Barberis E, Arduino E (1992). Influence of climate on the iron oxide mineralogy of terra rossa. Clays and Clay Minerals 40: 8-13. https://doi.org/10.1346/ CCMN.1992.0400102
  • Bolca M, Altınbaş Ü, Kurucu Y (2012). A study on pedogenetical distribution of minerals in the pedon of rhodoxeralf and rendoll soils showing formation on different slope facets. Ege Üniversitesi Ziraat Fakültesi Dergisi 49 (3): 229-238.
  • Brindley GW (1980). Quantitative X-Ray mineral analysis of clays G.W. Brindley, G. Brown (Eds.), Crystal Structures of Clay Minerals and Their X-ray Identification. Monograph 5, Mineralogical Society, London (1980), pp. 411-438 https://doi. org/10.1180/mono-5
  • Bronger A, Bruhn-Lobin N (1997). Paleopedology of Terrae rossae- Rhodoxeralfs from Quaternary calcarenites in NW Morocco. Catena 28 (3-4): 279-295. https://doi.org/10.1016/S0341- 8162(96)00043-4
  • Cengiz O, Kuşcu M (2010). Anamasdağları-Isparta terra rossalarının tuğla-kiremit üretiminde kullanılabilirliği. Kibited 1 (4): 79-91.
  • Chen PY (1977). Table of key lines in X-ray powder diffraction patterns of minerals in clays and associated rocks. Geological Survey Occasional Paper 21, Indiana Geological Survey Occasional Paper 21, p 67.
  • Whitney DL, Evans BW (2010). Abbreviations for names of rock- forming minerals. American Mineralogist 95 (1): 185-187. https://doi.org/10.2138/am.2010.3371
  • Dunham RJ (1962). Classification of carbonate rocks according to depositional texture. In: Ham, W.E., (eds.): Classification of carbonate rocks: American Association of Petroleum Geologists Memoir, pp 108-121. https://doi.org/10.1306/ M1357
  • Durn G (2003). Terra Rossa in the Mediterranean region: parent materials, composition and origin. Geologia Croatica 56 (1): 83-100. https://doi.org/10.4154/GC.2003.06
  • Durn G, Ottner F, Slovenec D (1999). Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma 91 (1-2): 125-150. https://doi.org/10.1016/ S0016-7061(98)00130-X
  • Durn G, Ćorić R, Tadej N, Barudžija U, Rubinić V et al. (2014). Bulk and clay mineral composition indicate origin of terra rossa soils in Western Herzegovina. Geologia Croatica 67 (3): 171- 183. https://doi.org/10.4154/GC.2014.13
  • Eren M, Kadir S (1999). Colour origin of Upper Cretaceous pelagic red sediments within the Eastern Pontides, northeast Turkey. International Journal of Earth Sciences 88: 593-595. https:// doi.org/10.1007/s005310050287
  • Eren M, Kadir S (2013). Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey. Turkish Journal of Earth Sciences 22: 563- 573. https://doi.org/10.3906/yer-1208-1
  • Fedo CM, Nesbitt HW, Young GM (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23 (10): 921-924. https://doi. org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
  • Fedoroff N, Courty MA (2013). Revisiting the genesis of red Mediterranean soils. Turkish Journal of Earth Sciences 22 (3): 359-375.
  • Feng JL, Pei LL, Zhu X, Ju JT, Gao SP (2018). Absolute accumulation and isotope fractionation of Si and Fe during dolomite weathering and terra rossa formation. Chemical Geology 496: 43-56. https://doi.org/10.1016/j.chemgeo.2018.08.018
  • Folk RL (1962). Spectral subdivision of limestone types. In Ham WE (eds) Classification of carbonate Rocks-A Symposium. American Association of Petroleum Geologists Memoir 1: 62- 84.
  • Garcia-Gonzales MT, Recio P (1988). Geochemistry and mineralogy of the clay fraction from some Spanish Terra Rossa. Agrochimica 32 (2-3): 161-170.
  • Göktaş F (1982). Muğla yöresindeki Senozoyik yaşlı çökel kayaların sedimentolojik ve paleocoğrafik incelenmesi, MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi Arşiv No: 519.
  • Göktaş F (1998). Muğla çevresindeki (GB Anadolu) Neojen tortullaşmasının stratigrafisi, sedimantolojisi ve bölgesel korelasyonu. MTA Derleme Rapor No: 10225.
  • Göktaş F, Alkanoğlu E, Yücelal A, Yalçın L (1982). 1/100 000 ölçekli sayısal jeoloji haritası Aydın N20 paftası. Türkiye Jeoloji Veri Tabanı, Jeoloji Etütleri Dairesi Başkanlığı, MTA Genel Müdürlüğü, Ankara.
  • Grim RE (1968). Clay Mineralogy. McGraw-Hill, New York.
  • Gül M (2015). Lithological properties and environmental importance of the Quaternary colluviums (Muğla, SW Turkey). Environmental Earth Sciences 74: 4089-4108. https:// doi.org/10.1007/s12665-015-4506-4
  • Gül M, Karacan E, Aksoy ME (2013). Muğla Kenti Yerleşim Alanı ve Yakın Çevresinin Genel Jeolojik ve Mühendislik Jeolojisi Özelliklerinin Araştırılması (An investigation of general geologic and engineering geological properties of Muğla and surroundings). Mugla Sıtkı Kocman University, Research Fund Project, BAP 12-54, p 28.
  • Gül M, Çetin E, Küçükuysal C, Gülcan M, Kahveci Y (2021). Recent alluvial fan developments in Muğla (SW Turkey). Arabian Journal of Geosciences 14: 819. https://doi.org/10.1007/ s12517-021-07159-3
  • Jones FO (1964). New fast accurate test measures bentonite in drilling mud. Oil and Gas Journal 42: 76-78.
  • Kapur S, Aglagül S, Karaman C, Şenol M, Atalay I et al. (1993). Dating of red Mediterranean soils in relation to weathering. In Kapur S, Derici MR, Mermut AR, Gülüt KY, Erenolu EB, Akça E, Onaç I (ed), 2nd International Meeting on “Red Mediterranean Soils”, Adana. Short Papers and Abstracts. Çukurova University Faculty of Agriculture Publication 44, Adana.
  • Katipoğlu D, Hakbilen S, Kavas S, Öner S, Çaputçu A et al. (2015). Değnek ve Tırtar (Mersin) köylerinin çevresinde yeralan Terra-Rossa Topraklarının Kil Mineralojisi ve Jeokimyası - İlk Bulgular. 16. Ulusal Kil Sempozyumu, Çanakkale, pp 166-198.
  • Konak N, Akdeniz N, Öztürk EM (1987). Geology of the South of Menderes Massif: IGCP Project No.5: Correlation of Variscan and Pre-Variscan Events of the Alpine-Mediterranean Mountain Belt. Field Meeting, Turkey, Guide Book For the Field Excursion Along Western Anatolia, Turkey, 42-53, Ankara.
  • Kubilay N, Saydam AC, Yemenicioğlu S, Aglagül S, Karaman C et al. (1993). Atmospheric dust in southern Turkey. In Kapur S, Mermut AR, Derici MR (ed) 2nd International Meeting on “Red Mediterranean Soils”, Adana, pp 45-47.
  • Macleod DA (1980). The origin of the red Mediterranean soils in Epirus, Greece. Journal of Soil Science 31 (1): 125-136. https:// doi.org/10.1111/j.1365-2389.1980.tb02070.x
  • Lucke B (2008). Demise of the Decapolis. Past and Present Desertification in the Context of Soil Development, Land Use, and Climate. Saarbrücken, Germany, VDM.
  • Maynard JB (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols. Journal of Geology 100 (3): 279-289. https://doi.org/10.1086/629632
  • McLennan SM (1993). Weathering and Global Denudation. Journal of Geology 101: 295-303. https://doi.org/10.1086/648222
  • Merino E, Banerjee A, Dworkin S (2006). Dust, terra rossa, replacement and karst: serendipitous geodynamics in the critical zone. Geochimica Cosmochimica Acta 70: A416. https://doi.org/10.1016/j.gca.2006.06.837
  • Miko S, Durn G, Prohić E (1999). Evaluation of terra rossa geochemical baselines from Croatian karst regions. Journal of Geochemical Exploration 66 (1-2): 173-182. https://doi. org/10.1016/S0375-6742(99)00010-2
  • Moore DM, Reynolds RC (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford.
  • Moresi M, Mongelli G (1988). The relation between the terra rossa and the carbonate free residue of the underlying limestones and dolostones in Apulia, Italy. Clay Minerals 23 (4): 439-446. https://doi.org/10.1180/claymin.1988.023.4.10
  • Muhs DR, Budhan JR, Prospero JM, Skipp G, Herwitz SR (2012). Soil genesis on the island of Bermuda in the Quaternary: The Importance of African Dust Transport and Deposition. Journal of Geophysical Research 117: F03025. https://doi. org/10.1029/2012JF002366
  • Nesbitt HW, Young GM (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715-717. https://doi.org/10.1038/299715a0
  • Nesbitt HW, Young GM (1984). Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48 (7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
  • Özbek H, Kapur S, Dinç U (1976). Mineralogical Variations Between Two Miocene Dolomitic Limestones and The Overlying Weathered Materials Forming Terra Rossas In Adana Southern Turkey. Çukurova Üniversity Ziraat Faculty Publications 7 (2): 118-144.
  • Priori S, Costantini EAC, Capezzuoli E, Protano G, Hilgers A, Sauer D, Sandrelli F (2008). Pedostratigraphy of Terra Rossa and Quaternary geological evolution of a lacustrine limestone plateau in central Italy. Journal of Plant Nutrition and Soil Science 171 (4): 509-523. https://doi.org/10.1002/ jpln.200700012
  • Retallack GJ (2001). Soils of the Past: An Introduction to Paleopedology. Second Edition, Blackwell. https://doi. org/10.1002/9780470698716
  • Retallack GJ, Wynn JG, Benefit BR, Mccrossin ML (2002). Paleosols and paleoenvironments of the middle Miocene, Maboko Formation, Kenya. Journal of Human Evolution 42 (6): 659- 703. https://doi.org/10.1006/jhev.2002.0553
  • Sandler A, Meunier A, Velde B (2015). Mineralogical and chemical variability of mountain red/brown Mediterranean soils. Geoderma 239-240: 156-167. https://doi.org/10.1016/j. geoderma.2014.10.008
  • Sarı M, Kurucu Y, Akça E, Eren M, Kadir S et al. (2018). Luvisols. In: Kapur S., Akça E., Günal H. (eds) The Soils of Turkey. World Soils Book Series. Springer, Cham. https://doi.org/10.1007/978- 3-319-64392-2_15
  • Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff (2012). Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
  • Sheldon ND, Retallack GJ, Tanaka S (2002). Geochemical climofunctions from North America soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. Journal of Geology 110: 687-696 https://doi. org/10.1086/342865
  • Sheldon ND (2006). Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 231 (3-4): 315-321. https:// doi.org/10.1016/j.palaeo.2005.09.001
  • Sheldon ND, Tabor NJ (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth- Science Reviews 95 (1-2): 1-52. https://doi.org/10.1016/j. earscirev.2009.03.004
  • Soil Survey Staff (1975). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. USDA Handbook No. 436. US Government Printing Office, Washington, DC.
  • Soil Survey Staff (1992). Keys to soil taxonomy, sixth edition (1994). Thorez J (1976). Practical Identification of Clay Minerals. Lelotte, Dison, Belgium.
  • Torrent J (2005). Mediterranean soils. In Hillel D (ed), Encyclopaedia of Soils in the Environment. vol. 2. Elsevier Academic Press, Oxford, pp 418-427. https://doi.org/10.1016/B0-12-348530- 4/00023-0
  • Vingiani S, Di Iorio E, Colombo C, Terribile F (2018). Integrated study of Red Mediterranean soils from Southern Italy. Catena 168: 129-140. https://doi.org/10.1016/j.catena.2018.01.002
  • Wei X, Ji H, Li D, Zhang F, Wang S (2013). Material source analysis and element geochemical research about two types of representative bauxite deposits and terra rossa in western Guangxi, southern China. Journal of Geochemical Exploration 133: 68-87. https://doi.org/10.1016/j.gexplo.2013.07.010
  • IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  • Yaalon DH (1997). Soils in the Mediterranean region: what makes them different? Catena 28 (3-4): 157-169. https://doi. org/10.1016/S0341-8162(96)00035-5
  • Yassoglou N, Kosmas C, Moustakas N (1997). The red soils, their origin, properties, use and management in Greece. Catena 28 (3-4): 261-278. https://doi.org/10.1016/S0341-8162(96)00042-2
APA Küçükuysal C, Gül M, Aghayev T, Gulcan M (2022). Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). , 563 - 578. 10.55730/1300-0985.1820
Chicago Küçükuysal Ceren,Gül Murat,Aghayev Tural,Gulcan Merve Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). (2022): 563 - 578. 10.55730/1300-0985.1820
MLA Küçükuysal Ceren,Gül Murat,Aghayev Tural,Gulcan Merve Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). , 2022, ss.563 - 578. 10.55730/1300-0985.1820
AMA Küçükuysal C,Gül M,Aghayev T,Gulcan M Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). . 2022; 563 - 578. 10.55730/1300-0985.1820
Vancouver Küçükuysal C,Gül M,Aghayev T,Gulcan M Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). . 2022; 563 - 578. 10.55730/1300-0985.1820
IEEE Küçükuysal C,Gül M,Aghayev T,Gulcan M "Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey)." , ss.563 - 578, 2022. 10.55730/1300-0985.1820
ISNAD Küçükuysal, Ceren vd. "Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey)". (2022), 563-578. https://doi.org/10.55730/1300-0985.1820
APA Küçükuysal C, Gül M, Aghayev T, Gulcan M (2022). Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). Turkish Journal of Earth Sciences, 31(6), 563 - 578. 10.55730/1300-0985.1820
Chicago Küçükuysal Ceren,Gül Murat,Aghayev Tural,Gulcan Merve Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). Turkish Journal of Earth Sciences 31, no.6 (2022): 563 - 578. 10.55730/1300-0985.1820
MLA Küçükuysal Ceren,Gül Murat,Aghayev Tural,Gulcan Merve Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). Turkish Journal of Earth Sciences, vol.31, no.6, 2022, ss.563 - 578. 10.55730/1300-0985.1820
AMA Küçükuysal C,Gül M,Aghayev T,Gulcan M Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). Turkish Journal of Earth Sciences. 2022; 31(6): 563 - 578. 10.55730/1300-0985.1820
Vancouver Küçükuysal C,Gül M,Aghayev T,Gulcan M Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey). Turkish Journal of Earth Sciences. 2022; 31(6): 563 - 578. 10.55730/1300-0985.1820
IEEE Küçükuysal C,Gül M,Aghayev T,Gulcan M "Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey)." Turkish Journal of Earth Sciences, 31, ss.563 - 578, 2022. 10.55730/1300-0985.1820
ISNAD Küçükuysal, Ceren vd. "Mineralogical and geochemical signatures of weathering on carbonate rocks and dynamic young land surfaces in Muğla Polje (SW Turkey)". Turkish Journal of Earth Sciences 31/6 (2022), 563-578. https://doi.org/10.55730/1300-0985.1820