Yıl: 2021 Cilt: 8 Sayı: 3 Sayfa Aralığı: 284 - 299 Metin Dili: İngilizce DOI: 10.21448/ijsm.943707 İndeks Tarihi: 05-01-2023

Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia

Öz:
Antioxidant activities of the different extracts (n-heptane, chloroform, methanol) from the roots and aerial parts of Scorzonera veratrifolia by maceration method, as well as total phenolic and flavonoid content were examined first time in this study. The findings revealed that the methanol extract from S. veratrifolia aerial parts exhibited greater DPPH radical scavenging $(IC_{50}: 0.62±0.60 mg/mL)$ and iron (III) reduction capacity $(1.56±0.03 mM Fe^{2+}/mg extract)$. Furthermore, aerial parts methanol extract has the highest concentration of total phenolic (46.3±1.1 mgGAE/g extract) and flavonoid (0.013±0.002 mg QE/mg extract) compounds. Based on these findings, the main phenolic content of aerial parts methanol extract was analyzed by LC-ESI-QTOF/MS, as this extract was found to contain the strongest antioxidant as well as the highest amount of phenolics and flavonoids as compared to the others. Quinic acid, chlorogenic acid, rutin, liquiritin, quercetin hexoside, luteolin-7-O-rutinoside, and di-O-caffeoylquinic acid compounds were identified as major compounds in methanol extract. The findings showed that aerial parts of S. veratrifolia, rather than its roots, could be used as a source of antioxidants.
Anahtar Kelime: Antioxidant LC-MS Scorzonera Phenolic

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Acıkara, O.B., Cıtıoglu, G.S., & Ozkan, A.M.G. (2013). Qualitative and quantitative analysis of phenolic acids in Scorzonera tomentosa L. Turk J Pharm Sci., 10, 1-8.
  • Acıkara, O.B., Ergene, B., Bakar, F., Cıtoglu, G.S., & Nebioglu, S. (2017). Evaluation of Antioxidant Activities and Phenolic Compounds of Scorzonera latifolia (Fisch. & Mey.) DC. Collected from Different Geographic Origins in Turkey. Turk J Pharm Sci., 14, 179- 184. http://dx.doi.org/10.4274/tjps.57070
  • Akyüz, E., Özyürek, M., Güçlü, K., & Apak, M.R. (2013). Novel pro-oxidant activity assay for polyphenols vitamins C and E using a modified CUPRAC method. Talanta., 115, 583–589. https://doi.org/10.1016/j.talanta.2013.06.006
  • Benzie, I.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem., 239, 70-76. https://doi.org/10.100 6/abio.1996.0292
  • Bursal, E., Taslimi, P., Goren, A.C., & Gulcin, I. (2020). Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatal. Agric. Biotechnol., 28, 101711. https://doi.org/10.1016/j.bcab.2020.101711
  • Chedea, V.S., Braıcu, C., & Cocacıu, C. (2010). Antioxidant/prooxidant activity of a polyphenolic grape seed extract. Food Chemi., 121, 132-139. https://doi.org/10.1016/j.food chem.2009.12.020
  • Erden, Y., Kırbag, S., & Yılmaz, O. (2013). Phytochemical Composition and Antioxidant Activity of Some Scorzonera Species. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 83, 271–276. http://dx.doi.org/10.1007/s40011-012-0129-7
  • Hallıwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?. Arch. Biochem. Biophys., 476, 107-112. https://doi.org/10.101 6/j.abb.2008.01.028
  • Hofmann, T., Nebehaj, E., & Albert, L. (2016). Antioxidant properties and detailed polyphenol profiling of Europeanhornbeam (Carpinus betulus L.) leaves by multiple antioxidantcapacity assays and high performance liquid chromatography/multistage electrospray mass spectrometry. Ind Crop Prod., 87, 340-349. https://doi.org/10.1016/j.ind crop.2016.04.037
  • Huyut, Z., Beydemir, Ş., & Gülçin, İ. (2017). Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds. Biochem Res Int., 2017, 10. https://doi.org/10.1155/ 2017/7616791
  • Karagöz, A., Artuna, F.T., Ozcan, G., Melikoglu, G., Anıl, S., Kultur, S., & Sutlupınar, N. (2015). In vitro evaluation of antioxidant activity of some plant methanol extracts. Biotechnol Biotec EQ., 29, 1184-1189. http://dx.doi.org/10.1080/13102818.2015.1080600
  • Nasseri, M.A., Bigy, S.S., Allahresani, A., & Malekaneh, M. (2015). Assessment of Antioxidant Activity, Chemical Characterization and Evaluation of Fatty Acid Compositions of Scorzonera paradoxa Fisch and C. A. Mey. Jundishapur J Nat Pharm Prod., 10, 19781. http://dx.doi.org/10.17795/jjnpp-19781
  • Papettı, A., Daglıa, M., Grısolı, P., Dacarro, C., Gregottı, C., & Gazzanı, G. (2006). Anti- and pro-oxidant activity of Cichorium genus vegetables and effect of thermal treatment in biological systems. Food Chem., 97, 157-165. https://doi.org/10.1016/j.foodchem.2005.03. 036
  • Samatha, T., Shyamsundarachary, R., Srinivas, P., & Swamy, N.R. (2012). Quantification of total phenolic and total flavonoid contents in extracts of Oroxylum indicum L. Kurz. Asian J. Pharmaceut. Clin. Res., 5, 177–179.
  • Sarı, A. (2010). Two new 3-benzylphthalides from Scorzonera veratrifolia Fenzl. Nat Prod Res. 24, 56-62. http://dx.doi.org/10.1080/14786410902800699
  • Sarı, A., Ozbek, B., & Ozgokce, F. (2009). Antimicrobial activities of two Scorzonera species growing in Turkey. Asıan J Chem. Commun., 21, 4785-4788.
  • Schütz, K., Kammerer, D.R., Carle, R., & Schieber, A. (2005). Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom.,19, 179–186. https://doi.org/10.3390/10.1002/rcm.1767
  • Simirgiotis, M.J., Benites, J., Areche, C., & Sepulveda, B. (2015). Antioxidant Capacities and Analysis of Phenolic Compounds in Three Endemic Nolana Species by HPLC-PDA-ESI- MS. Molec., 20, 11490-11507. https://doi.org/10.3390/molecules200611490
  • Tsevegsuren, N., Edrada, R., Lin, W., Ebel, R., Torre, C., Ortlepp, S., Wray, V., & Proksch, P. (2007). Biologically active natural products from Mongolian medicinal plants Scorzonera divaricate and Scorzonera pseudodivaricata. J Nat Prod., 70, 962-967. http://dx.doi.org/10 .1021/np070013r
  • Turumtay, E.A., Islamoglu, F., Cavus, D., Sahin, H., & Turumtay, H. (2014). Bartel Vanholme Correlation between phenolic compounds and antioxidant activity of Anzer tea (Thymus praecox Opiz subsp. Caucasicus var. caucasicus). Ind Crop Prod., 52, 687-694. https://doi. org/10.1016/j.indcrop.2013.11.042
  • Wang, Y., Edrada-Ebel, R.A., Tsevegsuren, N., Sendker, J., Braun, M., Wray, V., Lin, W., & Proksch, P. (2009). Dihydrostilbene Derivatives from the Mongolian Medicinal Plant Scorzonera radiata. J. Nat. Prod., 72, 671–675. http://dx.doi.org/10.1021/np800782f
  • Wei, F., Jinglou, C., Yaling, C., Yongfang, L., Liming, C., Lei, P., Zhou, D., Liang, X., & Ruan, J. (2010). Antioxidant, free radical scavenging, antiinflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch.et Sav.) Ching. J. Ethnopharmacol., 130, 521–528. https://doi.org/10.1016/j.jep.2010.05.039
APA TAŞKIN D, Geçim M, doğan a, BECEREN A (2021). Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. , 284 - 299. 10.21448/ijsm.943707
Chicago TAŞKIN Duygu,Geçim Mert,doğan ahmet,BECEREN AYFER Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. (2021): 284 - 299. 10.21448/ijsm.943707
MLA TAŞKIN Duygu,Geçim Mert,doğan ahmet,BECEREN AYFER Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. , 2021, ss.284 - 299. 10.21448/ijsm.943707
AMA TAŞKIN D,Geçim M,doğan a,BECEREN A Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. . 2021; 284 - 299. 10.21448/ijsm.943707
Vancouver TAŞKIN D,Geçim M,doğan a,BECEREN A Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. . 2021; 284 - 299. 10.21448/ijsm.943707
IEEE TAŞKIN D,Geçim M,doğan a,BECEREN A "Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia." , ss.284 - 299, 2021. 10.21448/ijsm.943707
ISNAD TAŞKIN, Duygu vd. "Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia". (2021), 284-299. https://doi.org/10.21448/ijsm.943707
APA TAŞKIN D, Geçim M, doğan a, BECEREN A (2021). Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. International Journal of Secondary Metabolite, 8(3), 284 - 299. 10.21448/ijsm.943707
Chicago TAŞKIN Duygu,Geçim Mert,doğan ahmet,BECEREN AYFER Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. International Journal of Secondary Metabolite 8, no.3 (2021): 284 - 299. 10.21448/ijsm.943707
MLA TAŞKIN Duygu,Geçim Mert,doğan ahmet,BECEREN AYFER Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. International Journal of Secondary Metabolite, vol.8, no.3, 2021, ss.284 - 299. 10.21448/ijsm.943707
AMA TAŞKIN D,Geçim M,doğan a,BECEREN A Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. International Journal of Secondary Metabolite. 2021; 8(3): 284 - 299. 10.21448/ijsm.943707
Vancouver TAŞKIN D,Geçim M,doğan a,BECEREN A Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia. International Journal of Secondary Metabolite. 2021; 8(3): 284 - 299. 10.21448/ijsm.943707
IEEE TAŞKIN D,Geçim M,doğan a,BECEREN A "Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia." International Journal of Secondary Metabolite, 8, ss.284 - 299, 2021. 10.21448/ijsm.943707
ISNAD TAŞKIN, Duygu vd. "Polyphenolic composition and Antioxidant Effect of Aerial Parts and Roots Extracts from Scorzonera veratrifolia". International Journal of Secondary Metabolite 8/3 (2021), 284-299. https://doi.org/10.21448/ijsm.943707