Yıl: 2022 Cilt: 54 Sayı: 1 Sayfa Aralığı: 127 - 132 Metin Dili: İngilizce DOI: 10.5152/eurasianjmed.2022.22314 İndeks Tarihi: 24-05-2023

Sepsis: Immunopathology, Immunotherapies, and Future Perspectives

Öz:
Sepsis is a syndrome that includes physiological, pathological, and biochemical abnormalities resulting from the host immune response to infection. Despite the improved treatment modalities in recent years, the incidence and mortality of sepsis are still increasing. Sepsis immunopathology is increasingly attracting the attention of researchers. The successes experienced with immunotherapeutics in the treatment of cancer and coronavirus disease 2019, which are diseases with similar pathophysiological features and common immune defects with sepsis, have given rise to the hope that similar successes can be achieved in the treatment of sepsis. In this review, future perspectives on the immunopathology of sepsis and immunotherapeutics are presented to improve the current understanding of the disease.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Funk DJ, Parrillo JE, Kumar A. Sepsis and septic shock: a history. Crit Care Clin. 2009;25(1):83- 101. [CrossRef]
  • 2. Majno G. The ancient riddle of σñψις (sepsis). J Infect Dis. 1991;163(5):937-945. [CrossRef]
  • 3. Akpinar E, Kutlu Z, Kose D, et al. Protective effects of idebenone against sepsis induced acute lung damage. J Invest Surg. 2022;35(3):560-568. [CrossRef]
  • 4. Ugan RA, Un H, Gurbuz MA, et al. Possible contribution of the neprilysin/ACE pathway to sepsis in mice. Life Sci. 2020;258:118177. [CrossRef]
  • 5. Keskin H, Tavaci T, Halici H, et al. Early administration of milrinone ameliorates lung and kidney injury during sepsis in juvenile rats. Pediatr Int. 2021;64(1):e14917. [CrossRef]
  • 6. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801-810. [CrossRef]
  • 7. Kutlu Z, Celik M, Bilen A, et al. Effects of umbelliferone isolated from the Ferulago pauciradiata Boiss. & Heldr. Plant on cecal ligation and puncture- induced sepsis model in rats. Biomed Pharmacother. 2020;127:110206. [CrossRef]
  • 8. Cinar I, Sirin B, Aydin P, et al. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sci. 2019;221:327- 334. [CrossRef]
  • 9. Cadirci E, Ugan RA, Dincer B, et al. Urotensin receptors as a new target for CLP induced septic lung injury in mice. Naunyn-Schmiedebergs Arch Pharmacol. 2019;392(2):135-145. [CrossRef]
  • 10. Köse D, Yüksel TN, Halıcı Z, Çadırcı E, Gürbüz MA. The effects of agomelatine treatment on lipop olysa cchar ide-i nduce d septic lung injuries in rats. Eurasian J Med. 2021;53(2):127-131. [CrossRef]
  • 11. Bayraktutan Z, Dincer B, Keskin H, et al. Roflumilast as a potential therapeutic agent for cecal ligation and puncture-induced septic lung injury. J Invest Surg. 2022;35(3):605-613. [CrossRef]
  • 12. Kutlu Z, Gulaboglu M, Halıcı Z, Cınar İ, Dıyarbakır B. Biochemical research of the effects of essential oil obtained from the fruit of Myrtus communis L. on cell damage associated with lipop olysa cchar ide-i nduce d endotoxemia in a human umbilical cord vein endothelial cells. Biochem Genet. 2021;59(1):315-334. [CrossRef]
  • 13. Kose D, Un H, Ugan RA, et al. Aprepitant: an antiemetic drug, contributes to the prevention of acute lung injury with its anti-inflammatory and antioxidant properties. J Pharm Pharmacol. 2021;73(10):1302-1309. [CrossRef]
  • 14. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407-420. [CrossRef]
  • 15. Hotchkiss RS, Monneret G, Payen D. Sepsisinduced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862-874. [CrossRef]
  • 16. Ates I, Dogan N, Aksoy M, Halıcı Z, Gündogdu C, Keles MS. The protective effects of IgM-enriched immunoglobulin and erythropoietin on the lung and small intestine tissues of rats with induced sepsis: biochemical and histopathological evaluation. Pharm Biol. 2015;53(1):78-84. [CrossRef]
  • 17. Prescott HC, Angus DC. Postsepsis morbidity. JAMA. 2018;319(1):91-91. [CrossRef]
  • 18. Fleischmann-Struzek C, Rose N, Freytag A, et al. Epidemiology and costs of postsepsis morbidity, nursing care dependency, and mortality in Germany, 2013 to 2017. JAMA Netw Open. 2021;4(11):e2134290. [CrossRef]
  • 19. Liu V, Escobar GJ, Greene JD, et al. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA. 2014;312(1):90-92. [CrossRef]
  • 20. Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259-272. [CrossRef]
  • 21. Thompson K, Venkatesh B, Finfer S. Sepsis and septic shock: current approaches to management. Intern Med J. 2019;49(2):160-170. [CrossRef]
  • 22. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392(10141):75- 87. [CrossRef]
  • 23. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311(13):1308-1316. [CrossRef]
  • 24. Calfee CS. Stirrings in the graveyard. Sci Transl Med. 2012;4(152):152ec171-152ec171. [CrossRef]
  • 25. Cadirci E, Halici Z, Bayir Y, et al. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats. Immunobiology. 2013;218(10):1271-1283. [CrossRef]
  • 26. Polat B, Cadirci E, Halici Z, et al. The protective effect of amiodarone in lung tissue of cecal ligation and puncture-induced septic rats: a perspective from inflammatory cytokine release and oxidative stress. Naunyn-Schmiedebergs Arch Pharmacol. 2013;386(7):635-643. [CrossRef]
  • Albayrak A, Halici Z, Polat B, et al. Protective effects of lithium: a new look at an old drug with potential antioxidative and anti-inflammatory effects in an animal model of sepsis. Int Immunopharmacol. 2013;16(1):35-40. [CrossRef]
  • 28. Demir R, Cadirci E, Akpinar E, et al. Does bosentan protect diabetic brain alterations in rats? The role of endothelin-1 in the diabetic brain. Basic Clin Pharmacol Toxicol. 2015;116(3):236-243. [CrossRef]
  • 29. Akpinar E, Halici Z, Cadirci E, et al. What is the role of renin inhibition during rat septic conditions: preventive effect of aliskiren on sepsisinduced lung injury. Naunyn-Schmiedebergs Arch Pharmacol. 2014;387(10):969-978. [CrossRef]
  • 30. Nandi M, Jackson SK, Macrae D, Shankar-Hari M, Tremoleda JL, Lilley E. Rethinking animal models of sepsis – working towards improved clinical translation whilst integrating the 3Rs. Clin Sci (Lond). 2020;134(13):1715-1734. [CrossRef]
  • 31. Mirouse A, Vigneron C, Llitjos JF, et al. Sepsis and cancer: an interplay of friends and foes. Am J Respir Crit Care Med. 2020;202(12):1625-1635. [CrossRef]
  • 32. Cohen J, Vincent JL, Adhikari NKJ, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15(5):581-614. [CrossRef]
  • 33. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517-528. [CrossRef]
  • 34. Cadirci E, Halici Z, Odabasoglu F, et al. Sildenafil treatment attenuates lung and kidney injury due to overproduction of oxidant activity in a rat model of sepsis: a biochemical and histopathological study. Clin Exp Immunol. 2011;166(3):374- 384. [CrossRef]
  • 35. Angus DC, Van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840-851. [CrossRef]
  • 36. Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 2019;20(21):5376. [CrossRef]
  • 37. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805- 820. [CrossRef]
  • 38. Wiersinga WJ, Leopold SJ, Cranendonk DR, van Der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36-44. [CrossRef]
  • 39. Galen BT, Sankey C. Sepsis: an update in management. J Hosp Med. 2015;10(11):746-752. [CrossRef]
  • 40. Luan YY, Yao YM, Xiao XZ, Sheng ZY. Insights into the apoptotic death of immune cells in sepsis. J Interferon Cytokine Res. 2015;35(1):17-22. [CrossRef]
  • 41. Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc). 2020;85(10):1178-1190. [CrossRef]
  • 42. Sørensen OE, Borregaard N. Neutrophil extracellular traps - the dark side of neutrophils. J Clin Invest. 2016;126(5):1612-1620. [CrossRef]
  • 43. Czaikoski PG, Mota JM, Nascimento DC, et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS One. 2016;11(2):e0148142. [CrossRef]
  • 44. Albayrak A, Uyanik MH, Odabasoglu F, et al. The effects of diabetes and/or polymicrobial sepsis on the status of antioxidant enzymes and proinflammatory cytokines on heart, liver, and lung of ovariectomized rats. J Surg Res. 2011;169(1):67- 75. [CrossRef]
  • 45. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821-852. [CrossRef]
  • 46. de Stoppelaar SF, van ’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112(4):666-677. [CrossRef]
  • 47. Coskun AK, Yigiter M, Oral A, et al. The effects of montelukast on antioxidant enzymes and proinflammatory cytokines on the heart, liver, lungs, and kidneys in a rat model of cecal ligation and puncture–induced sepsis. The Sci World J. 1900;11:657560. [CrossRef]
  • 48. Karamese M, Erol HS, Albayrak M, Findik Guvendi G, Aydin E, Aksak Karamese S. Anti-oxidant and anti-inflammatory effects of apigenin in a rat model of sepsis: an immunological, biochemical, and histopathological study. Immunopharmacol Immunotoxicol. 2016;38(3):228-237. [CrossRef]
  • 49. Kaiser M, Semeraro MD, Herrmann M, Absenger G, Gerger A, Renner W. Immune aging and immunotherapy in cancer. Int J Mol Sci. 2021;22(13). [CrossRef]
  • 50. Boomer JS, To K, Chang KC, et al. Immunosuppression in Patients who Die of Sepsis and Multiple Organ Failure. 2011;306(23):2594-2605. [CrossRef]
  • 51. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347-364. [CrossRef]
  • 52. Luan YY, Yin CF, Qin QH, et al. Effect of regulatory T cells on promoting apoptosis of T lymphocyte and its regulatory mechanism in sepsis. J Interferon Cytokine Res. 2015;35(12):969-980. [CrossRef]
  • 53. Kalogeropoulos D, Papoudou-Bai A, Lane M, et al. Antigen-presenting cells in ocular surface diseases. Int Ophthalmol. 2020;40(6):1603-1618. [CrossRef]
  • 54. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27-37. [CrossRef]
  • 55. Aydoğdu S, Karameşe M, Altoparlak Ü, Aksak Karameşe S. The protective effects of long-term probiotic application on experimental sepsisdependent inflammation process [article]. Bezmialem Sci. 2019;7(3):180-185. [CrossRef]
  • 56. Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res. 2022;9(1):56. [CrossRef]
  • 57. Cavalli G, Dinarello CA. Suppression of inflammation and acquired immunity by IL-37. Immunol Rev. 2018;281(1):179-190. [CrossRef]
  • 58. Wang YC, Weng GP, Liu JP, Li L, Cheng QH. Elevated serum IL-37 concentrations in patients with sepsis. Medicine. 2019;98(10):e14756. [CrossRef]
  • 59. Peters van Ton AM, Kox M, Abdo WF, Pickkers P. Precision immunotherapy for sepsis. Front Immunol. 2018;9:1926. [CrossRef]
  • 60. Hampson P, Dinsdale RJ, Wearn CM, et al. Neutrophil dysfunction, immature granulocytes, and cell-free DNA are early biomarkers of sepsis in burn-injured patients: a prospective observational cohort study. Ann Surg. 2017;265(6):1241- 1249. [CrossRef]
  • 61. Orozco H, Arch J, Medina-Franco H, et al. Molgramostim (GM-CSF) associated with antibiotic treatment in nontraumatic abdominal sepsis: a randomized, double-blind, placebo-controlled clinical trial. Arch Surg. 2006;141(2):150-154. [CrossRef]
  • 62. Paine R 3rd, Standiford TJ, Dechert RE, et al. A randomized trial of recombinant human granulocyte- macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med. 2012;40(1):90-97. [CrossRef]
  • 63. Bekele Y, Sui Y, Berzofsky JA. IL-7 in SARS-CoV-2 infection and as a potential vaccine adjuvant. Front Immunol. 2021;12:737406. [CrossRef]
  • 64. Lévy Y, Sereti I, Tambussi G, et al. Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis. 2012;55(2):291- 300. [CrossRef]
  • 65. Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010;184(7):3768-3779. [CrossRef]
  • 66. Francois B, Jeannet R, Daix T, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight. 2018;3(5). [CrossRef]
  • 67. Döcke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3(6):678- 681. [CrossRef]
  • 68. Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J Clin Invest. 2016;126(1):23-31. [CrossRef]
  • 69. Safi M, Ahmed H, Al-Azab M, et al. PD-1/PDL-1 inhibitors and cardiotoxicity; molecular, etiological and management outlines. J Adv Res. 2021;29:45-54. [CrossRef]
  • 70. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443- 2454. [CrossRef]
  • 71. Zhang Y, Zhou Y, Lou J, et al. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care. 2010;14(6):R220. [CrossRef]
  • 72. Hotchkiss RS, Colston E, Yende S, et al. Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med. 2019;45(10):1360- 1371. [CrossRef]
  • 73. Steinhagen F, Schmidt SV, Schewe JC, Peukert K, Klinman DM, Bode C. Immunotherapy in sepsis - brake or accelerate? Pharmacol Ther. 2020;208:107476. [CrossRef]
  • 74. Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/ TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987;330(6149):662-664. [CrossRef]
  • 75. Abraham E, Wunderink R, Silverman H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor α in patients with sepsis syndrome: a randomized, controlled, double- blind, multicenter clinical trial. JAMA. 1995;273(12):934-941.
  • 76. Abraham E, Glauser MP, Butler T, et al. p55 Tumor necrosis factor receptor fusion protein in the treatment of patients with severe sepsis and septic shock: a randomized controlled multicenter trial. JAMA. 1997;277(19):1531-1538.
  • 77. Abraham E, Anzueto A, Gutierrez G, et al. Double- blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet. 1998;351(9107):929-933. [CrossRef]
  • 78. Pelletier M, Ratthé C, Girard D. Mechanisms involved in interleukin-15-induced suppression of human neutrophil apoptosis: role of the antiapoptotic Mcl-1 protein and several kinases including Janus kinase-2, p38 mitogen-activated protein kinase and extracellular signal-regulated kinases-1/2. FEBS Lett. 2002;532(1-2):164-170. [CrossRef]
  • 79. Inoue S, Unsinger J, Davis CG, et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J Immunol. 2010;184(3):1401-1409. [CrossRef]
  • 80. Weber GF, Chousterman BG, He S, et al. Interleukin- 3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science. 2015;347(6227):1260-1265. [CrossRef]
  • 81. Jensen IJ, Sjaastad FV, Griffith TS, Badovinac VP, Cell Immunoparalysis S-IT. Sepsis-induced T cell immunoparalysis: the ins and outs of impaired T cell immunity. J Immunol. 2018;200(5):1543- 1553. [CrossRef]
  • 82. van der Poll T. Immunotherapy of sepsis. Lancet Infect Dis. 2001;1(3):165-174. [CrossRef]
  • 83. Patil NK, Bohannon JK, Sherwood ER. Immunotherapy: a promising approach to reverse sepsisinduced immunosuppression. Pharmacol Res. 2016;111:688-702. [CrossRef]
  • 84. Deng J, Wang J, Shi J, et al. Tailoring the physicochemical properties of nanomaterials for immunomodulation. Adv Drug Deliv Rev. 2022;180:114039. [CrossRef]
  • 85. Mihara M, Kasutani K, Okazaki M, et al. Tocilizumab inhibits signal transduction mediated by both mIL- 6R and sIL-6R, but not by the receptors of other members of IL-6 cytokine family. Int Immunopharmacol. 2005;5(12):1731-1740. [CrossRef]
  • 86. Ladak SSJ, Chan VWS, Easty T, Chagpar A. Right medication, right dose, right patient, right time, and right route: how do we select the right patient-controlled analgesia (PCA) device? Pain Manag Nurs. 2007;8(4):140-145. [CrossRef]
  • 87. Fridman WH, Zitvogel L, Sautès–Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717-734. [CrossRef]
  • 88. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807-821. [CrossRef]
  • 89. Olwal CO, Nganyewo NN, Tapela K, et al. Parallels in sepsis and COVID-19 conditions: implications for managing severe COVID-19. Perspective. Front Immunol. 2021;3:12doi. [CrossRef]
  • 90. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393-e400. [CrossRef]
  • 91. Somers EC, Eschenauer GA, Troost JP, et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin Infect Dis. 2021;73(2):e445-e454. [CrossRef]
APA TAVACI T, Akgün N (2022). Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. , 127 - 132. 10.5152/eurasianjmed.2022.22314
Chicago TAVACI Taha,Akgün Nurullah Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. (2022): 127 - 132. 10.5152/eurasianjmed.2022.22314
MLA TAVACI Taha,Akgün Nurullah Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. , 2022, ss.127 - 132. 10.5152/eurasianjmed.2022.22314
AMA TAVACI T,Akgün N Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. . 2022; 127 - 132. 10.5152/eurasianjmed.2022.22314
Vancouver TAVACI T,Akgün N Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. . 2022; 127 - 132. 10.5152/eurasianjmed.2022.22314
IEEE TAVACI T,Akgün N "Sepsis: Immunopathology, Immunotherapies, and Future Perspectives." , ss.127 - 132, 2022. 10.5152/eurasianjmed.2022.22314
ISNAD TAVACI, Taha - Akgün, Nurullah. "Sepsis: Immunopathology, Immunotherapies, and Future Perspectives". (2022), 127-132. https://doi.org/10.5152/eurasianjmed.2022.22314
APA TAVACI T, Akgün N (2022). Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. Eurasian Journal of Medicine, 54(1), 127 - 132. 10.5152/eurasianjmed.2022.22314
Chicago TAVACI Taha,Akgün Nurullah Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. Eurasian Journal of Medicine 54, no.1 (2022): 127 - 132. 10.5152/eurasianjmed.2022.22314
MLA TAVACI Taha,Akgün Nurullah Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. Eurasian Journal of Medicine, vol.54, no.1, 2022, ss.127 - 132. 10.5152/eurasianjmed.2022.22314
AMA TAVACI T,Akgün N Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. Eurasian Journal of Medicine. 2022; 54(1): 127 - 132. 10.5152/eurasianjmed.2022.22314
Vancouver TAVACI T,Akgün N Sepsis: Immunopathology, Immunotherapies, and Future Perspectives. Eurasian Journal of Medicine. 2022; 54(1): 127 - 132. 10.5152/eurasianjmed.2022.22314
IEEE TAVACI T,Akgün N "Sepsis: Immunopathology, Immunotherapies, and Future Perspectives." Eurasian Journal of Medicine, 54, ss.127 - 132, 2022. 10.5152/eurasianjmed.2022.22314
ISNAD TAVACI, Taha - Akgün, Nurullah. "Sepsis: Immunopathology, Immunotherapies, and Future Perspectives". Eurasian Journal of Medicine 54/1 (2022), 127-132. https://doi.org/10.5152/eurasianjmed.2022.22314