Yıl: 2023 Cilt: 27 Sayı: 2 Sayfa Aralığı: 696 - 704 Metin Dili: İngilizce DOI: 10.29228/jrp.352 İndeks Tarihi: 31-05-2023

Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo

Öz:
Paclitaxel is widely used in the treatment of many cancers. Paclitaxel-induced ototoxicity is related to the neurotoxic effects of paclitaxel on auditory peripheral neurons. Zingiberene has significant antitumor and antioxidant properties. This study aimed to determine whether zingiberene protects against the ototoxicity caused by paclitaxel. Twenty-four Wistar Albino rats were divided into four groups. The control group received 1 ml/kg saline on days 1, 7, 14, and 21. The paclitaxel group received 5 mg/kg paclitaxel on days 1, 7, 14, and 21. On days 1, 7, 14, and 21, the zingiberene group received 10mg/kg of zingiberene. Paclitaxel + zingiberene group first 5 mg/kg paclitaxel and 30 minutes later 10mg zingiberene on the 1st, 7th, 14th, and 21st days. A distortion product-evoked otoacoustic emission test (DPOAE) was performed before (day 0) and after (day 22) of the experiment. The pretreatment DPOAE values of the groups were not significantly different. On day 22, the DPOAE results in the paclitaxel group showed a considerable decline. Malondialdehyde levels were substantially higher, and glutathione levels were much lower in the paclitaxel group. The paclitaxel+zingiberene group displayed significantly higher DPOAE levels than the paclitaxel group. Compared to the paclitaxel group paclitaxel+zingiberene, glutathione levels were considerably higher, and malondialdehyde levels were significantly lower. The study findings provide the first evidence in the literature that zingiberene can prevent ototoxicity from paclitaxel-induced hearing loss by lowering the levels of oxidant parameters. It demonstrates that administering zingiberene and paclitaxel together may be a practical clinical approach to alleviate paclitaxel- induced ototoxicity.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Ganesan P, Schmiedge J, Manchaiah V, Swapna S, Dhandayutham S, and Kothandaraman PP. Ototoxicity: A challenge in diagnosis and treatment. J Audiol Otol. 2018; 22(2):59-68. [CrossRef]
  • [2]. Lanvers-Kaminsky C, Zehnhoff-Dinnesen Aa, Parfitt R, and Ciarimboli G. Drug-induced ototoxicity: Mechanisms, pharmacogenetics, and protective strategies. Clin Pharm Therap. 2017; 101(4):491-500. [CrossRef]
  • [3]. Dong Y, Ding D, Jiang H, Shi J-r, Salvi R, and Roth JA. Ototoxicity of paclitaxel in rat cochlear organotypic cultures. Toxicol Appl Pharmacol. 2014; 280(3):526-533. [CrossRef]
  • [4]. Bucak A, Ozdemir C, Ulu S, Gonul Y, Aycicek A, Uysal M, and Cangal A. Investigation of protective role of curcumin against paclitaxel-induced inner ear damage in rats. The Laryngoscope. 2015; 125(5):1175- 1182. [CrossRef]
  • [5]. Atalay F, Tatar A, Dincer B, Gündoğdu B, and Köyceğiz S. Protective effect of carvacrol against paclitaxel-ınduced ototoxicity in rat model. Turk Arch Otorhinolaryngol. 2020; 58(4):241-248. [CrossRef]
  • [6]. Yang Y-H, Mao J-W, and Tan X-L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med. 2020; 18(12):890-897. [CrossRef]
  • [7]. Weaver BA, How Taxol/paclitaxel kills cancer cells. Moll Biol Cell. 2014; 25(18):2677-2681. [CrossRef]
  • [8]. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, and Brem H. Paclitaxel: A review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007; 6(5):609-621. [CrossRef]
  • [9]. Kiya T, Kawamata T, Namiki A, and Yamakage M. Role of satellite cell-derived l-serine in the dorsal root ganglion in paclitaxel-induced painful peripheral neuropathy. Neuroscience. 2011; 174:190-199. [CrossRef]
  • [10]. Pak JH, Kim Y, Yi J, and Chung JW. Antioxidant therapy against oxidative damage of the ınner ear: protection and preconditioning. Antioxidants. 2020; 9(11):1076. [CrossRef]
  • [11]. Ayala A, Muñoz MF, and Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014; 2014:1-31. [CrossRef]
  • [12]. Ohinata Y, Yamasoba T, Schacht J, and Miller JM. Glutathione limits noise-induced hearing loss. Hear Res. 2000; 146(1):28-34. [CrossRef]
  • [13]. Ivanović M, Makoter K, and Islamčević Razboršek M. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants. 2021; 10(3):1-18. [CrossRef]
  • [14]. El-Ghorab AH, Nauman M, Anjum FM, Hussain S, and Nadeem M. A Comparative Study on Chemical Composition and Antioxidant Activity of Ginger (Zingiber officinale) and Cumin (Cuminum cyminum). J Agric Food Chem. 2010; 58(14):8231-8237. [CrossRef]
  • [15]. Wang X, Shen Y, Thakur K, Han J, Zhang J-G, Hu F, and Wei Z-J. Antibacterial activity and mechanism of ginger essential oil against escherichia coli and staphylococcus aureus. Molecules, 2020; 25(17):1-17. [CrossRef]
  • [16]. Lima DAN, Pelegrini BB, Uechi FAA, Varago RC, Pimenta BB, Kaneshima AMS, Kaneshima EN, Souza PDC, Pedroso RB, Silveira TGV, and Becker TCA. Evaluation of antineoplasic activity of zingiber officinale essential oil in the colorectal region of wistar rats. Asian Pac J Cancer Prev. 2020; 21(7):2141- 2147. [CrossRef]
  • [17]. Dincer B, Cinar I, Yayla M, and Toktay E. Evaluation of the protective effects of gossypin for ischemia/reperfusion injury in ovary tissue. J Obstet Gynaecol Res. 2022; 48(3):748-756. [CrossRef]
  • [18]. Hallworth R and F. Ludueña R. Differential expression of β tubulin isotypes in the adult gerbil cochlea. Hear Res. 2000; 148(1):161-172. [CrossRef]
  • [19]. Lobarinas E, Salvi R, and Ding D. Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res. 2013; 302:113-120. [CrossRef]
  • [20]. Atas A, Agca O, Sarac S, Poyraz A, and Akyol MU. Investigation of ototoxic effects of Taxol on a mice model. Int J Pediatr Otorhinolaryngol. 2006; 70(5):779-784. [CrossRef]
  • [21]. Tibaldi C, Pazzagli I, Berrettini S, and De Vito A. A case of ototoxicity in a patient with metastatic carcinoma of the breast treated with paclitaxel and vinorelbine. Eur J Cancer. 1998; 34(7):1133. [CrossRef]
  • [22]. Dincer B, Atalay F, and Tatar A. Otoprotective effects of farnesene against oxidative damage induced by paclitaxel. Cukurova Med J. 2022; 47(2):783-791. [CrossRef]
  • [23]. Chirtes F and Albu S. Prevention and restoration of hearing loss associated with the use of cisplatin. Biomed Res Int. 2014; 2014:1-9. [CrossRef]
  • [24]. Deavall DG, Martin EA, Horner JM, and Roberts R. Drug-ınduced oxidative stress and toxicity. J Toxicol. 2012; 2012:1-13. [CrossRef]
  • [25]. Kopke RD, Liu W, Gabaizadeh R, Jacono A, and Feghali J. Use of organotypic cultures of Corti's organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. The Am J Otol. 1997; 18:559-571.
  • [26]. Kilic K, Sakat MS, Akdemir FNE, Yildirim S, Saglam YS, and Askin S. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. Braz J Otorhinolaryngol. 2019; 85:267-274. [CrossRef]
  • [27]. Sakat MS, Kilic K, Akdemir FNE, Yildirim S, Eser G, and Kiziltunc A. The effectiveness of eugenol against cisplatin-induced ototoxicity. Braz J Otorhinolaryngol. 2019; 85:766-773. [CrossRef]
  • [28]. Paken J, Govender CD, Pillay M, and Sewram V. Cisplatin-associated ototoxicity: a review for the health professional. J Toxicol. 2016; 2016:1-13. [CrossRef]
  • [29]. Lee CH, Lee D-h, Lee SM, and Kim SY. Otoprotective effects of zingerone on cisplatin-induced ototoxicity. Int J Mol Sci. 2020; 21(10):1-11. [CrossRef]
  • [30]. Lee CH, Kim KW, Lee SM, and Kim SY. Dose-dependent effects of resveratrol on cisplatin-ınduced hearing loss. Int J Mol Sci. 2021; 22(1):1-12. [CrossRef]
  • [31]. Somdaş MA, Güntürk İ, Balcıoğlu E, Avcı D, and Özdamar S. Protective effect of N-acetylcysteine against cisplatin ototoxicity in rats: a study with hearing tests and scanning electron microscopy. Braz J Otorhinolaryngol. 2020; 86:30-37. [CrossRef]
  • [32]. Peña A, Rojas L, Aparicio R, Alarcón L, Baptista JG, Velasco J, Carmona J, and Usubillaga A. Chemical composition and antibacterial activity of the essential oil of espeletia nana. N Nat Prod Commun. 2012; 7(5):661-662. [CrossRef]
  • [33]. Lu M, Han Z, Xu Y, and Yao L. In vitro and in vivo anti-tobacco mosaic virus activities of essential oils and individual compounds. J Microbiol Biotechnol. 2013; 23(6):771-778. [CrossRef]
  • [34]. Singh PK and Kaur IP. Synbiotic (probiotic and ginger extract) loaded floating beads: a novel therapeutic option in an experimental paradigm of gastric ulcer. J Pharm Pharmacol. 2011; 64(2):207-217. [CrossRef]
  • [35]. Chen H, Tang X, Liu T, Jing L, and Wu J. Zingiberene inhibits in vitro and in vivo human colon cancer cell growth via autophagy induction, suppression of PI3K/AKT/mTOR pathway and caspase 2 deactivation. J BUON. 2019; 24(4):1470-1475.
  • [36]. Peng X, Luo R, Li J, He A, Wang X, Wan H, Cai Y, Dong W, and Lin J. Zingiberene targets the miR- 16/cyclin-B1 axis to regulate the growth, migration and invasion of human liver cancer cells. J BUON. 2020; 25:1904-1910.
  • [37]. Seshadri VD, Oyouni AAA, Bawazir WM, Alsagaby SA, Alsharif KF, Albrakati A, and Al-Amer OM. Zingiberene exerts chemopreventive activity against 7,12-dimethylbenz(a)anthracene-induced breast cancer in Sprague-Dawley rats. J Biochem Mol Toxicol. 2022:e23146. [CrossRef]
  • [38]. Li J, Thangaiyan R, Govindasamy K, and Wei J. Anti-inflammatory and anti-apoptotic effect of zingiberene on isoproterenol-induced myocardial infarction in experimental animals. Hum Exp Toxicol. 2021; 40(6):915-927. [CrossRef]
APA DİNÇER B, ATALAY F, TATAR A (2023). Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. , 696 - 704. 10.29228/jrp.352
Chicago DİNÇER Büşra,ATALAY Fatma,TATAR Arzu Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. (2023): 696 - 704. 10.29228/jrp.352
MLA DİNÇER Büşra,ATALAY Fatma,TATAR Arzu Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. , 2023, ss.696 - 704. 10.29228/jrp.352
AMA DİNÇER B,ATALAY F,TATAR A Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. . 2023; 696 - 704. 10.29228/jrp.352
Vancouver DİNÇER B,ATALAY F,TATAR A Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. . 2023; 696 - 704. 10.29228/jrp.352
IEEE DİNÇER B,ATALAY F,TATAR A "Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo." , ss.696 - 704, 2023. 10.29228/jrp.352
ISNAD DİNÇER, Büşra vd. "Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo". (2023), 696-704. https://doi.org/10.29228/jrp.352
APA DİNÇER B, ATALAY F, TATAR A (2023). Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. Journal of research in pharmacy (online), 27(2), 696 - 704. 10.29228/jrp.352
Chicago DİNÇER Büşra,ATALAY Fatma,TATAR Arzu Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. Journal of research in pharmacy (online) 27, no.2 (2023): 696 - 704. 10.29228/jrp.352
MLA DİNÇER Büşra,ATALAY Fatma,TATAR Arzu Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. Journal of research in pharmacy (online), vol.27, no.2, 2023, ss.696 - 704. 10.29228/jrp.352
AMA DİNÇER B,ATALAY F,TATAR A Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. Journal of research in pharmacy (online). 2023; 27(2): 696 - 704. 10.29228/jrp.352
Vancouver DİNÇER B,ATALAY F,TATAR A Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo. Journal of research in pharmacy (online). 2023; 27(2): 696 - 704. 10.29228/jrp.352
IEEE DİNÇER B,ATALAY F,TATAR A "Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo." Journal of research in pharmacy (online), 27, ss.696 - 704, 2023. 10.29228/jrp.352
ISNAD DİNÇER, Büşra vd. "Zingiberene attenuates paclitaxel-induced ototoxicity by strengthening cochlear antioxidant defense system in vivo". Journal of research in pharmacy (online) 27/2 (2023), 696-704. https://doi.org/10.29228/jrp.352