Yıl: 2023 Cilt: 38 Sayı: 2 Sayfa Aralığı: 106 - 121 Metin Dili: İngilizce DOI: 10.26650/ASE20231252136 İndeks Tarihi: 31-05-2023

Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture

Öz:
Aquaculture activities that have been carried out intensively for several decades have made this sector grow rapidly compared to other food sectors. However, intensive activities have negative impacts, one of which is on the environment. To respond to these problems, aquaculture activities have now focused on environmentally friendly aquaculture by implementing various ecosys- tem-based cultivation systems and improving aquaculture management based on the principle of sustainable aquaculture. The IMTA (Integrated Multi-trophic Aquaculture) system is a cultivation system that uses species with different trophic levels to reuse wasted nutrients to be used as bio- mass. Currently, the IMTA system has begun to be developed in various countries in fresh, brackish, and marine water cultivation with multiple approaches according to environmental, social, and economic conditions. This review study discusses different IMTA systems and their applications.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Amalia, R., Rejeki, S., Widowati, L. L. L., Ariyati, R. W. (2022). The growth of tiger shrimp (Penaeus monodon) and its dynamics of water quality in integrated culture. Biodiversitas, 23 (1), 593-600. doi: 10.13057/ biodiv/d230164
  • Azhar, M. H., Suciyono, S., Budi, D. S., Ulkhaq, M. F., Anugrahwati, M., & Ekasari, J. (2020). Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon–nitrogen ratios. Aquaculture International, 28(3), 1293–1304. doi: 10.1007/s10499-020-00526-z
  • Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26–35. doi: 10.1016/j. aquaeng.2012.07.004
  • Bakhsh, H. K., & Chopin, T. (2012). A variation on the IMTA theme: a land- based, closed-containment freshwater IMTA system for tilapia and lettuce. Aquaculture Canada, 22, 57–60.
  • Bakhsh, H., Chopin, T., Murray, S., Hamer, E., & Belyea, A. (2015). Adapting tropical integrated aquaponic systems to temperate cold freshwater integrated multi-trophic aquaculture (FIMTA) systems. Aquaculture Canada 2014, Proceedings of Contributed Papers; Bulletin of the Aquaculture Association of Canada, pp. 17–25.
  • Barrington, K., Chopin, T., & Robinson, S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. Integrated Mariculture - A Global Review - FAO Fisheries and Aquaculture Technical Paper N0. 529, (December), 7–46. doi: 10.1016/S0044-8486(03)00469-1
  • Biswas, G., Kumar, P., Kailasam, M., Ghoshal, T. K., Bera, A., & Vijayan, K. K. (2019). Application of Integrated Multi Trophic Aquaculture (IMTA) Concept in Brackishwater Ecosystem: The First Exploratory Trial in the Sundarban, India. Journal of Coastal Research, 86(sp1), 49–55. doi: 10.2112/SI86-007.1
  • Borges, B. A. A., Rocha, J. L., Pinto, P. H. O., Zacheu, T., Chede, A. C., Magnotti, C. C. F., Arana, L. A. V. (2020). Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc technology: Zootechnical performance, sludge generation, and Vibrio spp. Reduction. Aquaculture, 524, 735234. doi: 10.1016/j. aquaculture.2020.735234
  • Brito, L. O., Chagas, A. M., da Silva, E. P., Soares, R. B., Severi, W., & Gálvez, A. O. (2016). Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquaculture Research, 47(3), 940–950. doi: 10.1111/are.12552
  • Buck, B., Troell, M., Krause, G., Angel, D., Grote, B., & Chopin, T. (2018). State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science, 5(165), 1–21.
  • Carras, M. A., Knowler, D., Pearce, C. M., Hamer, A., Chopin, T., & Weaire, T. (2020). A discounted cash-flow analysis of salmon monoculture and Integrated Multi-Trophic Aquaculture in eastern Canada. Aquaculture Economics and Management, 24(1), 43–63. doi: 10.1080/13657305.2019.1641572
  • Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H., & Fang, J. (2008). Multitrophic Integration for Sustainable Marine Aquaculture. Encyclopedia of Ecology, Five-Volume Set, (December), 2463–2475. doi: 10.1016/B978-008045405-4.00065-3
  • Chopin, T. (2006). Integrated Multi-Trophic Aquaculture What it is, and why you should care.... and don’t confuse it with polyculture. Northern Aquaculture, (August), 2006.
  • Chopin, T. (2013a). Integrated Multi-Trophic Aquaculture Ancient, Adaptable Concept Focuses on Ecological Integration. Global Aquaculture Advocate, (March/ April), 16–19.
  • Chopin, T. (2013b). Aquaculture, Integrated Multi-trophic (IMTA) in Book: Sustainable Food Production (R.A. Meyers, Ed.). Springer, Dordrecht. doi: 10.1007/978-1-4614-5797-8
  • Chopin, T., MacDonald, B., Robinson, S., Cross, S., Pearce, C., Knowler, D., & Hutchinson, M. (2013). The Canadian Integrated Multi-Trophic Aquaculture Network (CIMTAN)-A Network for a New Era of Ecosystem Responsible Aquaculture. Fisheries, 38(7), 297–308.
  • Chopin, T., Murray, S., & Bakhsh, H. K. (2016). Freshwater IMTA. Hatchery International: RECIRC IN ACTION, 31(April 2019), 1–3.
  • Cunha, M. E., Quental-Ferreira, H., Parejo, A., Gamito, S., Ribeiro, L., Moreira, M., Pousão-Ferreira, P. (2019). Understanding the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. Aquaculture, 512(March), 734297. doi: 10.1016/j.aquaculture.2019.734297
  • David, F. S., Proença, D. C., & Valenti, W. C. (2017). Phosphorus Budget in Integrated Multitrophic Aquaculture Systems with Nile Tilapia, Oreochromis niloticus, Amazon River Prawn, Macrobrachium amazonicum. Journal of the World Aquaculture Society, 48(3), 402– 414. doi: 10.1111/jwas.12404
  • Diana, J. S., Egna, H. S., Chopin, T., Peterson, M. S., Cao, L., Pomeroy, R., Cabello, F. (2013). Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience, 63(4), 255–262. doi: 10.1525/bio.2013.63.4.5
  • Edwards, P. (2015). Aquaculture environment interactions: Past, present and likely future trends. Aquaculture, 447, 2–14. doi: 10.1016/j. aquaculture.2015.02.001
  • FAO. (2018). The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. In The State of The World series of the Food and Agriculture Organization of the United Nations. Aquaculture (Vol. 35). doi: ISSN 10
  • FAO. (1995). Code of Conduct for Responsible Fisheries. Food And Agriculture Organization of The United Nations Rome, 1995.
  • FAO. (2022). Integrated multitrophic aquaculture: lessons from China. Bangkok. Food and Agriculture Organization of the United Nations, 1–8.
  • Flickinger, D. L., Costa, G. A., Dantas, D. P., Moraes-Valenti, P., & Valenti, W. C. (2019). The budget of nitrogen in the growćout of the Amazon river prawn (Macrobrachium amazonicum Heller) and tambaqui (Colossoma macropomum Cuvier) farmed in monoculture and in integrated multitrophic aquaculture systems. Aquaculture Research, 50, 444–3461.
  • Flickinger, D. L., Costa, G. A., Dantas, D. P., Proença, D. C., David, F. S., Durborow, R. M., Valenti, W. C. (2020). The budget of carbon in the farming of the Amazon River prawn and tambaqui fish in earthen pond monoculture and integrated multitrophic systems. Aquaculture Reports, 17(September 2019), 100340. doi: 10.1016/j. aqrep.2020.100340
  • Flickinger, D. L., Dantas, D. P., Proença, D. C., David, F. S., & Valenti, W. C. (2019a). Phosphorus in the culture of the Amazon River prawn (Macrobrachium amazonicum) and tambaqui (Colossoma macropomum) are farmed in monoculture and in integrated multitrophic systems. J World Aquacult Soc., 1–22. doi: 10.1111/ jwas.12655
  • Franchini, A. C., Costa, G. A., Pereira, S. A., Valenti, W. C., & Moraes- Valenti, P. (2020). Improving production and diet assimilation in fish- prawn integrated aquaculture, using iliophagus species. Aquaculture, 521(January), 735048. doi: 10.1016/j.aquaculture.2020.735048
  • Gaona, C. A. P., Poersch, L. H., Krummenauer, D., Foes, G. K., & Wasielesky, W. J. (2011). The Effect of Solids Removal on Water Quality, Growth and Survival of Litopenaeus vannamei in a Biofloc Technology Culture System. International Journal of Recirculating Aquaculture, 12(1). doi: 10.21061/ijra.v12i1.1354
  • Giangrande, A., Pierri, C., Arduini, D., Borghese, J., Licciano, M., Trani, R., Longo, C. (2020). An innovative IMTA system: Polychaetes, sponges and macroalgae co-cultured in a Southern Italian in-shore mariculture plant (Ionian Sea). Journal of Marine Science and Engineering, 8(10), 1–24. doi: 10.3390/JMSE8100733
  • Goada, A., Essa, M. A., Haassan, M., & Sharawy, Z. (2015). Bio Economic Features for Aquaponic Systems in Egypt. Turkish Journal of Fisheries and Aquatic Sciences, 15, 531–538. doi: 10.4194/1303-2712-v15_2_40
  • Granada, L., Sousa, N., Lopes, S., & Lemos, M. F. L. (2016). İs integrated multitrophic aquaculture the solution to the sector’s significant challenges a review.pdf. Reviews in Aquaculture, 8, 283–300. doi: 10.1111/raq.12093
  • Holanda, M., Santana, G., Furtado, P., Rodrigues, R. V., Cerqueira, V. R., Sampaio, L. A., Poersch, L. H. (2020). Evidence of total suspended solids control by Mugil liza reared in an integrated system with pacific white shrimp Litopenaeus vannamei using biofloc technology. Aquaculture Reports, 18(September). doi: 10.1016/j. aqrep.2020.100479
  • Hu, F., Sun, M., Fang, J., Wang, G., Li, L., Gao, F., Guo, W. (2021). Carbon and nitrogen budget in fish-polychaete integrated aquaculture system. Journal of Oceanology and Limnology, 39(3), 1151–1159. doi: 10.1007/s00343-020-0218-z
  • Ibáñez Otazua, N., Blázquez Sánchez, M., Ruiz Yarritu, O., Unzueta Balmaseda, I., Aboseif, A. M., Abou Shabana, N. M., ... Goda, A. M. A. (2022). Integrated Multitrophic Aquaponics—A Promising Strategy for Cycling Plant Nutrients and Minimizing Water Consumption. 28. doi: 10.3390/iecho2022-12493
  • Jaeger, C., & Aubin, J. (2018). Ecological intensification in multi-trophic aquaculture ponds: an experimental approach. Aquat. Living Resour., 31(36), 1–12. doi: 10.1051/alr/2018021
  • Jaeger, C., Roucaute, M., Nahon, S., & Slembrouck, J. (2021). Effects of a lagoon on performances of a freshwater fishpond in a multi-trophic aquaculture system. Aquatic Living Resources, 34, 0–12. doi: 10.1051/ alr/2021004
  • Jerónimo, D., Lillebø, A. I., Santos, A., Cremades, J., & Calado, R. (2020). Performance of polychaete assisted sand filters under contrasting nutrient loads in an integrated multi-trophic aquaculture (IMTA) system. Scientific Reports, 10(1), 1–10. doi: 10.1038/s41598-020- 77764-x
  • Kestemont, P. (1995). Different systems of carp production and their impacts on the environment. Aquaculture, 129(1–4), 347–372. doi: 10.1016/0044-8486(94)00292-V
  • Khanjani, M. H., & Sharifinia, M. (2022). Biofloc technology with the addition of molasses as carbon sources applied to Litopenaeus vannamei juvenile production under the effects of different C/N ratios. Aquaculture International, 30(1), 383–397. doi: 10.1007/ s10499-021-00803-5
  • Khanjani, M. H., Zahedi, S., & Mohammadi, A. (2022). Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT). Environmental Science and Pollution Research, 29(45), 67513–67531. doi: 10.1007/s11356-022-22371-8
  • Kibria, A. S. M., & Haque, M. M. (2018). Potentials of integrated multi- trophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquaculture Reports, 11(May), 8–16. doi: 10.1016/j.aqrep.2018.05.004
  • Kodama, M. (2019). Overview and history of IMTA, from ancient to modern times in Understanding Current Challenges and Future Prospects in Integrated Multi-Trophic Aquaculture (IMTA) Research (Proceeding). Southeast Asian Fisheries Development Center Aquaculture Department and Japan International Research Center for Agricultural Sciences.
  • Largo, D. B., Diola, A. G., & Marababol, M. S. (2016). Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in southern Cebu, Central Philippines. Aquaculture Reports, 3, 67–76. doi: 10.1016/j.aqrep.2015.12.006
  • Li, M., Callier, M. D., Blancheton, J. P., Galès, A., Nahon, S., Triplet, S., Roque d’orbcastel, E. (2019). Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system. Aquaculture, 504(October 2018), 314–325. doi: 10.1016/j. aquaculture.2019.02.013
  • Lima, P. C. M., Silva, A. E. M., Silva, D. A., Silva, S. M. B. C., Brito, L. O., Gálvez, A. O. (2021). Effect of stocking density of Crassostrea sp. in a multitrophic biofloc system with Litopenaeus vannamei in nursery. Aquaculture, 530(June 2020), 735913. doi: 10.1016/j. aquaculture.2020.735913
  • Magondu, E. W., Fulanda, B. M., Munguti, J. M., & Mlewa, C. M. (2022). Toward integration of sea cucumber and cockles with culture of shrimps in earthen ponds in Kenya. Journal of the World Aquaculture Society, 53(5), 948–962. doi: 10.1111/jwas.12861
  • Martins, C. I. M., Eding, E. H., Verdegem, M. C. J., Heinsbroek, L. T. N., Schneider, O., Blancheton, J. P., Verreth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural Engineering, 43(3), 83–93. doi: 10.1016/j.aquaeng.2010.09.002
  • Nath, K., Munilkumar, S., Patel, A. B., Kamilya, D., Pandey, P. K., & Banerjee Sawant, P. (2021). Lamellidens and Wolffia canopy improve growth, feed utilization and welfare of Labeo rohita (Hamilton,1822) in an integrated multi-trophic freshwater aquaculture system. Aquaculture, 534(July 2020), 736207. doi: 10.1016/j.aquaculture.2020.736207
  • Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591(7851), 551–563. doi: 10.1038/s41586-021-03308-6
  • Nederlof, M. A. J., Jansen, H. M., Dahlgren, T. G., Fang, J., Meier, S., Strand, Ø., Smaal, A. C. (2019). Application of polychaetes in (de) coupled integrated aquaculture: Production of a high-quality marine resource. Aquaculture Environment Interactions, 11, 221–237. doi: 10.3354/AEI00309
  • Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Yarish, C. (2004). Integrated aquaculture: Rationale, evolution, and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1–4), 361–391. doi: 10.1016/j. aquaculture.2003.11.015
  • Nissar, S., Bakhtiyar, Y., Arafat, M. Y., Andrabi, S., Mir, Z. A., Khan, N. A., & Langer, S. (2023). The evolution of integrated multi-trophic aquaculture in context of its design and components paving way to valorisation via optimization and diversification. Aquaculture, 565(November 2022), 739074. doi: 10.1016/j.aquaculture.2022.739074
  • Orellana, J., Waller, U., & Wecker, B. (2014). Culture of yellowtail kingfish (Seriola lalandi) in a marine recirculating aquaculture system (RAS) with artificial seawater. Aquacultural Engineering, 58, 20–28. doi: 10.1016/j.aquaeng.2013.09.004
  • Otazua, N. I., Sanchez, M. B., Yarritu, O. R., Balmaseda, I. U., Aboseif, A. M., Abou Shabana, N. M., Taha, M. K. S., & Goda A. M. A. (2022). Integrated Multitrophic Aquaponics-A Promising Strategy for Cycling Plant Nutrients and Minimizing Water Consumption. Biol. Life Sci. Forum, 16(28). doi: 10.3390/IECHo2022-12493
  • Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M., & Cheung, W. W. L. (2018). Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE, 13(1), 1–19. doi: 10.1371/journal.pone.0191086
  • Paolacci, S., Stejskal, V., Toner, D., & Jansen, M. A. K. (2022). Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species. Environmental Pollution, 302(February), 119059. doi: 10.1016/j.envpol.2022.119059
  • Poli, M. A., Legarda, E. C., de Lorenzo, M. A., Martins, M. A., & do Nascimento Vieira, F. (2019). Pacific white shrimp and Nile tilapia integrated in a biofloc system under different fish-stocking densities. Aquaculture, 498(August 2018), 83–89. doi: 10.1016/j. aquaculture.2018.08.045
  • Ray, A. J., Lewis, B. L., Browdy, C. L., & Leffler, J. W. (2010). Suspended solids removal to improve shrimp (Litopenaeus vannamei) production and an evaluation of a plant-based feed in minimal-exchange, superintensive culture systems. Aquaculture, 299(1–4), 89–98. doi: 10.1016/j.aquaculture.2009.11.021
  • Reid, G. K., Lefebvre, S., Filgueira, R., Robinson, S. M. C., Broch, O. J., Dumas, A., & Chopin, T. B. R. (2018). Performance measures and models for open-water integrated multi-trophic aquaculture. Reviews in Aquaculture, 12(1), 47–75. doi: 10.1111/raq.12304
  • Ren, J. S., Stenton-Dozey, J., Plew, D. R., Fang, J., & Gall, M. (2012). An ecosystem model for optimising production in integrated multitrophic aquaculture systems. Ecological Modelling, 246(C), 34– 46. doi: 10.1016/j.ecolmodel.2012.07.020
  • Rosa, J., Lemos, M. F. L., Crespo, D., Nunes, M., Freitas, A., Ramos, F., Leston, S. (2020). Integrated multitrophic aquaculture systems – Potential risks for food safety. Trends in Food Science and Technology, 96(July 2019), 79–90. doi: 10.1016/j.tifs.2019.12.008
  • Samocha, T. M., Fricker, J., Ali, A. M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture, 446, 263–271. doi: 10.1016/j.aquaculture.2015.05.008
  • Sanz-Lazaro, C., & Sanchez-Jerez, P. (2020). Regional Integrated Multi- Trophic Aquaculture (RIMTA): Spatially separated, ecologically linked. Journal of Environmental Management, 271(June), 110921. doi: 10.1016/j.jenvman.2020.110921
  • Sarkar, S., Rekha, P. N., Panigrahi, A., Das, R. R., Rajamanickam, S., & Balasubramanian, C. P. (2021). Integrated brackishwater farming of red seaweed Agarophyton tenuistipitatum and Pacific white leg shrimp Litopenaeus vannamei (Boone) in biofloc system: a production and bioremediation way out. Aquaculture International, 29(5), 2145– 2159. doi: 10.1007/s10499-021-00739-w
  • Sasikumar, G., & Viji, C. S. (2015). Integrated Multi-Trophic Aquaculture Systems (IMTA). In Winter School on Technological Advances in Mariculture for Production Enhancement and Sustainability, Course Manual. ICAR.
  • Schneider, O., Sereti, V., Eding, E. H., & Verreth, J. A. J. (2005). Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering, 32(3–4), 379–401. doi: 10.1016/j. aquaeng.2004.09.001
  • Shpigel, M., Ben Ari, T., Shauli, L., Odintsov, V., & Ben-Ezra, D. (2016). Nutrient recovery and sludge management in seabream and grey mullet co-culture in Integrated Multi-Trophic Aquaculture (IMTA). Aquaculture, 464, 316–322. doi: 10.1016/j.aquaculture.2016.07.007
  • Shpigel, M., Guttman, L., Shauli, L., Odintsov, V., Ben-Ezra, D., & Harpaz, S. (2017). Ulva lactuca from an Integrated Multi-Trophic Aquaculture (IMTA) biofilter system as a protein supplement in the gilthead seabream (Sparus aurata) diet. Aquaculture, 481(January), 112–118. doi: 10.1016/j.aquaculture.2017.08.006
  • Shpigel, M., Shauli, L., Odintsov, V., Ben-Ezra, D., Neori, A., & Guttman, L. (2018). The sea urchin, Paracentrotus lividus, in an Integrated Multi- Trophic Aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture, 490(February), 260–269. doi: 10.1016/j. aquaculture.2018.02.051
  • Sumoharjo, & Maidie, A. (2013). Evaluation on Biofilter in Recirculating Integrated Multi-Trophic Aquaculture. International Journal of Science and Engineering, 4(April), 80–85. Tacon, A. G. J., Metian, M., Turchini, G. M., & de Silva, S. S. (2010). Responsible aquaculture and trophic level implications to global fish supply. Reviews in Fisheries Science, 18(1), 94–105. doi: 10.1080/10641260903325680
  • Thomas, M., Pasquet, A., Aubin, J., Nahon, S., & Lecocq, T. (2020). When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biological Reviews, 96(2), 767–784. doi: 10.1111/brv.12677
  • Troell, M., Kautsky N., Beveridge, M., Patrik, H., Primavera, J., Patrik, R., Folke Carl, J. M. (2017a). Aquaculture. Aquaculture Development and Practices. Reference Module in Life Sciences, (April 2016), 1–14. doi: 10.1016/B978-0-12-809633-8.02007-0
  • Troell, M., Halling, C., Neori, A., Chopin, T., Buschmann, A. H., Kautsky, N., & Yarish, C. (2003). Integrated mariculture: Asking the right questions. Aquaculture, 226(1–4), 69–90. doi: 10.1016/S0044- 8486(03)00469-1
  • Troell, M. (2009). Integrated marine and brackishwater aquaculture in tropical regions. Integrated Mariculture - A Global Review - FAO Fisheries and Aquaculture Technical Paper No. 529, (October 2013), 47–132. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/ S0044848603004691
  • Troell, M., Jonell, M., & Henriksson, P. J. G. (2017b). Ocean space for seafood. Nature Ecology and Evolution, 1(9), 1224–1225. doi: 10.1038/s41559-017-0304-6
  • Waite, R., Beveridge, M., Castine, S., & Chaiyawannakarn, N. (2014). Improving Productivity and Environmental. World Resource Institute, 160(January), 251–258.
  • Waller, U., Buhmann, A. K., Ernst, A., Hanke, V., Kulakowski, A., Wecker, B., ... Papenbrock, J. (2015). Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquaculture International, 23(6), 1473–1489. doi: 10.1007/s10499-015-9898-3
  • Wei, Z., You, J., Wu, H., Yang, F., Long, L., Liu, Q., He, P. (2017). Bioremediation using Gracilaria lemaneiformis to manage the nitrogen and phosphorous balance in an integrated multi-trophic aquaculture system in Yantian Bay, China. Marine Pollution Bulletin, 121(1–2), 313–319. doi: 10.1016/j.marpolbul.2017.04.034
  • White, K., O’Niell, B., & Tzankova, Z. (2004). At a Crossroads: Will Aquaculture Fulfill the Promise of the Blue Revolution ? A SeaWeb Aquaculture Clearinghouse Report, (January 2004), 17. Retrieved from www.AquacultureClearinghouse.org
  • Yokoyama, H. (2013). Suspended culture of the sea cucumber Apostichopus japonicus below a Pacific oyster raft - potential for integrated multi-trophic aquaculture. Aquaculture Research, 46(4), 825–832. doi: 10.1111/are.12234
  • Zhang, J., Zhang, S., Kitazawa, D., Zhou, J., Park, S., Gao, S., & Shen, Y. (2019). Bio-mitigation based on integrated multi-trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. Latin American Journal of Aquatic Research, 47(2), 212–223. doi: 10.3856/vol47-issue2-full text-1
APA Azhar M, Memis D (2023). Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. , 106 - 121. 10.26650/ASE20231252136
Chicago Azhar Muhammad,Memis Devrim Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. (2023): 106 - 121. 10.26650/ASE20231252136
MLA Azhar Muhammad,Memis Devrim Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. , 2023, ss.106 - 121. 10.26650/ASE20231252136
AMA Azhar M,Memis D Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. . 2023; 106 - 121. 10.26650/ASE20231252136
Vancouver Azhar M,Memis D Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. . 2023; 106 - 121. 10.26650/ASE20231252136
IEEE Azhar M,Memis D "Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture." , ss.106 - 121, 2023. 10.26650/ASE20231252136
ISNAD Azhar, Muhammad - Memis, Devrim. "Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture". (2023), 106-121. https://doi.org/10.26650/ASE20231252136
APA Azhar M, Memis D (2023). Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. AQUATIC SCIENCES and ENGINEERING, 38(2), 106 - 121. 10.26650/ASE20231252136
Chicago Azhar Muhammad,Memis Devrim Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. AQUATIC SCIENCES and ENGINEERING 38, no.2 (2023): 106 - 121. 10.26650/ASE20231252136
MLA Azhar Muhammad,Memis Devrim Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. AQUATIC SCIENCES and ENGINEERING, vol.38, no.2, 2023, ss.106 - 121. 10.26650/ASE20231252136
AMA Azhar M,Memis D Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. AQUATIC SCIENCES and ENGINEERING. 2023; 38(2): 106 - 121. 10.26650/ASE20231252136
Vancouver Azhar M,Memis D Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture. AQUATIC SCIENCES and ENGINEERING. 2023; 38(2): 106 - 121. 10.26650/ASE20231252136
IEEE Azhar M,Memis D "Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture." AQUATIC SCIENCES and ENGINEERING, 38, ss.106 - 121, 2023. 10.26650/ASE20231252136
ISNAD Azhar, Muhammad - Memis, Devrim. "Application of the IMTA (Integrated Multi-Trophic Aquaculture) System in Freshwater, Brackish and Marine Aquaculture". AQUATIC SCIENCES and ENGINEERING 38/2 (2023), 106-121. https://doi.org/10.26650/ASE20231252136