Yıl: 2023 Cilt: 44 Sayı: 3 Sayfa Aralığı: 497 - 503 Metin Dili: İngilizce DOI: 10.17776/csj.1127921 İndeks Tarihi: 05-10-2023

The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast

Öz:
Lipases are mainly applied in the food, abluent and medicine industries. Through the high production costs of lipase enzymes for industrial applications, cheap and eco-friendly enzyme production has gained great importance in recent years. Yeasts can produce lipase enzyme and grow in acidic media. In the present study, the act of Cu2+, Ni2+ and molasses concentrations on the enzyme activity of Candida yeasts were investigated in a batch system. The maximum enzyme activities of microorganisms were determined at pH:4. Lipase enzyme activity was investigated changing metal ion and molasses sucrose concentrations by 25-250 mg/L and 1-20 g/L respectively. When molasses sucrose concentration was increased, the enzyme activity of all yeasts increased to 10 g/L, and the lipase enzyme activity decreased at the higher molasses concentrations. Enzyme activity of yeasts decreased with increasing both metal ion concentrations at constant molasses sucrose concentrations. Ni2+ cations were more inhibited to enzyme activity of all yeasts than Cu2+. Among the yeasts, Candida membranefeciens (936.96 U/L) showed the highest enzyme activity in media containing a constant molasses concentration of 10 g/L.
Anahtar Kelime: Candida Lipase Cu2+ Ni2 Enzyme activity

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Geoffry K., Achur R.N., A Novel Halophilic Extracellular Lipase with Both Hydrolytic and Synthetic Activities, Biocatal. Agric. Biotechnol., 12 (2017) 125–130.
  • [2] Kieliszek M., Kot A.M., Bzducha-Wróbel A., BŁażejak S., Gientka I., Kurcz A., Biotechnological Use of Candida Yeasts in The Food Industry: A Review, Fungal Biol. Rev., 3(4) (2017) 185-198.
  • [3] Tan J.S., Abbasiliasi S., Ariff A.B., Ng H.S., Bakar M., Chow Y.H., Extractive Purification of Recombinant Thermostable Lipase from Fermentation Broth of Escherichia coli Using An Aqueous Polyethylene Glycol Impregnated Resin System, 3Biotech., 8(6) (2018) 288.
  • [4] Thapa S., Li H., OHair J., Bhatti S., Chen F.C., Nasr K.A., Johnson T., Zhou S., Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives, Mol. Biotechnol., 61(8) (2019) 579–601.
  • [5] Gurung N., Ray S., Bose S., Rai V., A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond, Biomed Res. Int., (2013) 329121.
  • [6] Seth S., Chakravorty D., Dubey V.K., Patra S., An Insight into Plant Lipase Research Challenges Encountered, Protein Expr. Purif., (95) (2014) 13-21.
  • [7] Santos C.A., Caldeira M.L., Lopes da Silva T., Novais J.M., Reis A., Enhanced Lipidic Algae Biomass Production Using Gas Transfer from A Fermentative Rhodosporidium toruloides Culture to An Autotrophic Chlorella protothecoides Culture, Bioresour. Technol., 138 (2013) 48-54.
  • [8] Kieliszek M., Błażejak S., Bzducha-Wróbel A., Influence of Selenium Content in The Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950, Oxid. Med. Cell. Longev., (2015a) 659750.
  • [9] Krüger W., Vielreicher S., Kapitan M., Jacobsen I.D., Niemiec M.J., Fungal-Bacterial Interactions in Health And Disease, Pathogens., 8(2) (2019) 70.
  • [10] Rekha K.S.M., Lakshmi C.M.V., Sri Devi V., Kumar S.M., Production and Optimization of Lipase from Candida rugosa Using Groundnut Oilcake Under Solid State Fermentation, Int. J. Eng. Res. Appl., 1(4) (2012) 571-577.
  • [11] Alishah Aratboni H., Rafiei N., Garcia-Granados R., Alemzadeh A., Morones-Ramirez J.R., Biomass and Lipid İnduction Strategies in Microalgae for Biofuel Production and Other Applications, Microb. Cell Fact., 18 (2019) 178.
  • [12] Oliveira F., Moreira C., Salgado J.M., Abrunhosa L., Venancio A., Belo I., Olive Pomace Valorization by Aspergillus Species: Lipase Production Using Solid-State Fermentation, J. Sci. Food Agric., 96(10) (2016) 3583–3589.
  • [13] Priyanka P., Kinsella G., Henehan G.T., Ryan B.J., Isolation, Purification and Characterization of A Novel Solvent Stable Lipase from Pseudomonas reinekei, Protein Expr. Purif. 153 (2019) 121–130.
  • [14] Rasmey A.M., Aboseidah A.A., Gaber S., Mahran F., Characterization and Optimization of Lipase Activity Produced by Pseudomonas monteilli 2403-KY120354 Isolated from Ground Beef, Afr. J. Biotechnol., 16(2) (2017b) 96-105.
  • [15] Zheng X., Cheng W., Ji C., Zhang J., Yin M., Detection of Metal Ions in Biological Systems: A Review, Rev. Anal. Chem., 39(1) (2020) 231-246.
  • [16] Taskin M., Ucar M.H., Unver Y., Kara A.A., Ozdemir M., Ortucu S., Lipase Production with Free and Immobilized Cells of Cold-Adapted Yeast Rhodotorula glutinis HL25, Biocatal. Agric. Biotechnol., 8 (2016) 97-103.
  • [17] Turati D.F.M., Almeida A.F., Terrone C.C., Nascimento J.M., Terrasan C.R., Fernandez-Lorente G., Carmona E.C., Thermotolerant Lipase from Penicillium sp. Section Gracilenta CBMAI 1583: Effect of Carbon Sources on Enzyme Production, Biochemical Properties of Crude and Purified Enzyme and Substrate Specificity, Biocatal. Agric. Biotechnol., 17 (2019) 15–24.
  • [18] Bharathi D., Rajalakshmi G., Komathi S., Optimization and Production of Lipase Enzyme from Bacterial Strains Isolated from Petrol Spilled Soil, J. King Saud Univ. Sci., 31(4) (2018) 898-901.
  • [19] Bharathi D. and Rajalakshmi G., Microbial Lipases: An Overview of Screening, Production and Purification, Biocatal. Agric. Biotechnol., 22 (2019) 101368.
  • [20] Moftah O.A., Grbavčić S., Zuža M., Luković N., Bezbradica D., Knežević-Jugović Z., Adding Value to The Oil Cake As A Waste from Oil Processing Industry: Production of Lipase and Protease by Candida utilis in Solid State Fermentation, Appl. Biochem. Biotechnol., 166 (2) (2012) 348–364.
  • [21] Divya K. and Padma P.N., Psychrophilic Yeast Isolates for Cold-Active Lipase Production, Int. J. Sci. Prog. Res., 10 (2015) 93-97.
  • [22] Dias B., Lopes M., Ramôa R., Pereira A.S., Belo I., Candida tropicalis As A Promising Oleaginous Yeast for Olive Mill Wastewater Bioconversion, Energies., 14 (3) (2021) 640.
  • [23] Jalal M., Ansari M.A., Alzohairy M.A., Ali S.G., Khan H.M., Almatroudi A., Siddiqui M.I., Anticandidal Activity of Biosynthesized Silver Nanoparticles: Effect on Growth, Cell Morphology, and Key Virulence Attributes of Candida species, Int. J. Nanomedicine., 14 (2019) 4667-4679.
  • [24] Su F., Peng C., Li G.L., Xu L., Yan Y.J., Biodiesel Production from Woody Oil Catalyzed by Candida rugosa Lipase in Ionic Liquid, Renew. Energy., 90 (2016) 329–335.
  • [25] Salihu A., Alam M.Z., Abdulkarim M.I., Salleh H.M., Optimization of Lipase Production by Candida cylindracea in Palm Oil Mill Effluent Based Medium Using Statistical Experimental Design, J. Mol. Catal. B.: Enzym., (69) (2011) 66–73.
  • [26] Andrade Silva M., Silva T., Amorim Salgueiro A., Campos Takaki G., Tambourgi E., Reuse of Whey Cheese for Lipase Production by Candida lipolytica, Chem. Eng. Trans., 43 (2015) 331-336.
  • [27] Theron C.W., Vandermies M., Telek S., Steels S., Fickers P., Comprehensive Comparison of Yarrowia lipolytica and Pichia pastoris for Production of Candida antarctica Lipase B, Sci. Rep., 10 (2020) 1741.
  • [28] Zhong L., Feng Y., Wang G., Wang Z., Bilal M., Lv H., Jia S., Cui J., Production and Use of Immobilized Lipases in/on Nanomaterials: A Review from The Waste to Biodiesel Production, Int. J. Biol. Macromol., 152 (2020) 207–22.
  • [29] Mersin G. and Açıkel Ü., Production of Candida Biomasses for Heavy Metal Removal from Wastewaters, Trakya Univ. J. Nat. Sci., 22(1) (2021) 67-76.
  • [30] Açikel U., Erşan M., Sağ Açikel Y, The Effects of The Composition of Growth Medium and Fermentation Conditions on The Production of Lipase by R. Delemar, Turk. J. Biol., 35 (2011) 35-44.
  • [31] Robinson P.K., Enzymes: Principles and Biotechnological Applications, Essays Biochem., 59 (2015) 1-41.
  • [32] Keklikçioğlu Çakmak N. and Açıkel Ü., Candida utilis Mayasıyla Lipaz Enzimi Aktivitesinin Farklı Ortam Koşullarında İncelenmesi, J. Fac. Eng. Archit. Gazi Univ., 30 (3) (2015) 475-485.
  • [33] Taherzadeh M. J. and Karimi K., Fermentation Inhibitors in Ethanol Processes and Different Strategies to Reduce Their Effects, Biofuels., (2011) 287–311.
  • [34] Mihajlovski K.R., Radovanović N.R., Veljović N., Šiler-Marinković S.S, Dimitrijević-Branković S.I., Improved β-amylase Production on Molasses and Sugar Beet Pulp by A Novel Strain Paenibacillus chitinolyticus CKS1, Ind. Crops Prod., 80 (2016) 115- 122.
  • [35] Galvão de Morais W., Kamimura E.S., Ribeiro E.J., Pessela B.C., Cardoso V.L., de Resende M.M., Optimization of The Production and Characterization of Lipase from Candida rugosa and Geotrichum candidum in Soybean Molasses by Submerged Fermentation, Protein Expr. Purif., 123 (2016) 26-34.
  • [36] Açikel U. and Alp T., A Study on the Inhibition Kinetics of Bioaccumulation of Cu(II) and Ni(II) Ions Using Rhizopus delemar, J. Hazard. Mater., 168 (2-3) (2009) 1449-1458.
  • [37] Grbavcic S., Dimitrijevic-Brankovic S., Bezbradica D., Siler-Marinkovic S., Knezevic Z., Effect of Fermentation Conditions on Lipase Production by Candida utilis, J. Serb. Chem. Soc., 72(8-9) (2007) 757–765.
  • [38] Rehman A.U., Rasool S., Mukhtar H., Haq I.U., Ikram U.H., Production of An Extracellular Lipase by Candida utilis NRRL-Y-900 Using Agro-Industrial By-Products, Turk. J. Biochem., 39(2) (2014) 140–149.
  • [39] Zieniuk B., Mazurczak-Zieniuk P., Fabiszewska A., Exploring the Impact of Lipid-Rich Food İndustry Waste Carbon Sources on The Growth of Candida cylindracea DSM 2031, Fermentation, 6(4) (2020) 122.
APA MERSİN G, Açıkel Ü (2023). The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. , 497 - 503. 10.17776/csj.1127921
Chicago MERSİN Gülşah,Açıkel Ünsal The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. (2023): 497 - 503. 10.17776/csj.1127921
MLA MERSİN Gülşah,Açıkel Ünsal The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. , 2023, ss.497 - 503. 10.17776/csj.1127921
AMA MERSİN G,Açıkel Ü The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. . 2023; 497 - 503. 10.17776/csj.1127921
Vancouver MERSİN G,Açıkel Ü The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. . 2023; 497 - 503. 10.17776/csj.1127921
IEEE MERSİN G,Açıkel Ü "The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast." , ss.497 - 503, 2023. 10.17776/csj.1127921
ISNAD MERSİN, Gülşah - Açıkel, Ünsal. "The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast". (2023), 497-503. https://doi.org/10.17776/csj.1127921
APA MERSİN G, Açıkel Ü (2023). The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. Cumhuriyet Science Journal, 44(3), 497 - 503. 10.17776/csj.1127921
Chicago MERSİN Gülşah,Açıkel Ünsal The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. Cumhuriyet Science Journal 44, no.3 (2023): 497 - 503. 10.17776/csj.1127921
MLA MERSİN Gülşah,Açıkel Ünsal The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. Cumhuriyet Science Journal, vol.44, no.3, 2023, ss.497 - 503. 10.17776/csj.1127921
AMA MERSİN G,Açıkel Ü The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. Cumhuriyet Science Journal. 2023; 44(3): 497 - 503. 10.17776/csj.1127921
Vancouver MERSİN G,Açıkel Ü The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast. Cumhuriyet Science Journal. 2023; 44(3): 497 - 503. 10.17776/csj.1127921
IEEE MERSİN G,Açıkel Ü "The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast." Cumhuriyet Science Journal, 44, ss.497 - 503, 2023. 10.17776/csj.1127921
ISNAD MERSİN, Gülşah - Açıkel, Ünsal. "The Effects of Heavy Metals and Molasses on Enzyme Activity of Candida Yeast". Cumhuriyet Science Journal 44/3 (2023), 497-503. https://doi.org/10.17776/csj.1127921