Yıl: 2023 Cilt: 30 Sayı: 131 Sayfa Aralığı: 171 - 179 Metin Dili: İngilizce DOI: 10.7216/teksmuh.1268253 İndeks Tarihi: 10-10-2023

PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS

Öz:
Polhydroxbutyrates (PHBs) are well-known bio-based and biodegradable bacterial polyesters. In this study, the effects of polymer type, solution concentration and feeding rate on the electrospinnability of Poly(3-hydroxbutyrate) (PHB) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV nanofibers were investigated. First, PHB, PHBV and PHB/PHBV solutions with different polymer concentrations ranging between 5-11% wt. were prepared and characterized in terms of viscosity. Afterwards, electrospinning was performed and ultrafine fibers were produced. The surface morphology and the fiber diameters of the samples were investigated by scanning electron microscopy (SEM) analyses. Pore sizes of the samples were also calculated. In order to understand the wettability of the samples, contact angle measurements were conducted. The thermal properties and the crystallinity of the samples were investigated differential scanning calorimetry (DSC) analyses. The solution viscosities increased dramatically above %9 wt. of polymer concentration. SEM images revealed that decreasing feeding rate and increasing solution concentration resulted in fewer bead formation. On the other hand, fibers with diameters from 1.2 to 5.4 μm were produced with the increasing solution concentration and increasing voltage. All samples showed contact angle values above 90° indicating that they are hydrophobic. The PHB/PHBV blend surface showed the highest contact angle. DSC analyses showed that PHBV surface had significantly lower crystallization degree than PHB surface produced at the same concentration. It can be concluded that PHB fibers can be successfully produced by electrospinning.
Anahtar Kelime:

PHB, PHBV VE KARIŞIMI ELEKTRO ÇEKİM LİFLERİN ÜRETİMİ VE KARAKTERİZASYONU

Öz:
Polihidroksibütiratlar (PHB), biyobazlı ve biyolojik olarak parçalanabilen bakteriyel poliesterlerdir. Bu çalışmada, polimer tipi, çözelti konsantrasyonu, besleme oranı gibi proses parametrelerinin poli(3-hidroksibutirat) (PHB) ve Poli(3-hidroksibütirat-co-valerat) (PHBV) nanoliflerinin elektroçekimle üretilebilirliği üzerindeki etkileri incelenmiştir. İlk olarak, PHB, PHBV ve PHB/PHBV'den elektroçekim ile ağırlıkça %5-11 aralığında polimer içeren çözeltiler hazırlanmış ve viskoziteleri ölçülmüştür. Daha sonra elektro çekim prosesi ile ultra ince lifler üretilmiştir. Numunelerin yüzey morfolojileri, lif çapları ve gözenek boyutları taramalı elektron mikroskobu (SEM) ile incelenmiştir. Islanabilirliği anlamak için temas açısı ölçümleri yapılmıştır. Numunelerin termal özellikleri ve kristaliniteleri diferansiyel taramalı kalorimetri (DSC) analizleri ile incelenmiştir. Çözeltideki polimer konsantrasyonunun %9 üzerine çıkması çözelti konsantrasyonunu arttırmıştır. SEM görüntüleri, azalan besleme hızı ve artan çözelti konsantrasyonunun daha az boncuk oluşumuyla sonuçlandığını ortaya çıkarmıştır. Öte yandan, artan çözelti konsantrasyonu ve artan voltaj ile birlikte çapları 1,2-5,4 μm aralığında değişen lifler üretilmiştir. Tüm numuneler, 90°'nin üzerinde temas açısı değerleri göstererek hidrofobik karakter sergilemiştir. Bu numuneler arasında, PHB/PHBV karışımından elde edilen yüzey en yüksek temas açısını vermiştir. DSC analizleri, PHBV yüzeyinin aynı konsantrasyonda üretilen PHB yüzeyine göre önemli ölçüde daha düşük kristallenme derecesine sahip olduğunu göstermiştir. Bu sonuçlar doğrultusunda PHB liflerinin elektro çekim ile başarılı bir şekilde üretilebileceği sonucuna varılabilir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Koller, M., Salerno, A., Braunegg, G (2013). Bio-based plastics. John Wiley & Sons Ltd, Chichester, p.137-140.
  • 2. Poli, A., Di Donato, P., Abbamondi, G. R., Nicolaus, B. (2011). Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea,
  • 3. Pollet, E., & Avérous, L. (2011). (Ed. Plackett, D.) Biopolymers: new materials for sustainable films and coatings. John Wiley & Sons, United Kingdom
  • 4. Chen, G.G-Q., (2005). (Ed. Smith, R.). Biodegradable polymers for industrial applications. Woodhead Publishing, USA
  • 5. Kootstra, A. M. J., Elissen, H. J. H., Huurman, S. (2017). PHA’s (Polyhydroxyalkanoates): General information on structure and raw materials for their production, A running document for “Kleinschalige Bioraffinage WP9: PHA”, Task 5 (No. 727). Wageningen UR, PPO/Acrres.
  • 6. Chan, C. H., Kummerlöwe, C., Kammer, H. W. (2004). Crystallization and melting behavior of poly (3 hydroxybutyrate) based blends. Macromolecular Chemistry and Physics, 205(5), 664- 675.
  • 7. Ublekov, F., Budurova, D., Staneva, M., Natova, M., Penchev, H. (2018). Self-supporting electrospun PHB and PHBV/organoclay nanocomposite fibrous scaffolds. Materials Letters, 218, 353-356.
  • 8. Wang, X. X., Yu, G. F., Zhang, J., Yu, M., Ramakrishna, S., Long, Y. Z. (2021). Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 115, 100704.
  • 9. Teo, W. E., Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89.
  • 10. Garg, K., Sell, S. A., Bowlin, G. L. (2009). (Ed. Eichhorn, S. J., Hearle , J.W.S., Jaffe, M., Kikutani, T.) Electrospinning and its influence on the structure of polymeric nanofibers. In Handbook of Textile Fibre Structure (p. 460-483). Woodhead Publishing, Cornwall, UK.
  • 11. Krifa, M., Yuan, W. (2016). Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofiber membranes. Textile Research Journal, 86(12), 1294-1306.
  • 12. Düzyer, Ş. (2017). Fabrication of electrospun poly (ethylene terephthalate) scaffolds: characterization and their potential on cell proliferation in vitro. Textile and Apparel, 27(4), 334-341.
  • 13. Duzyer, S., Hockenberger, A., Zussman, E. (2011). Characterization of solvent spun polyester nanofibers. Journal of Applied Polymer Science, 120(2), 759-769.
  • 14. Nicosia, A., Gieparda, W., Foksowicz-Flaczyk, J., Walentowska, J., Wesołek, D., Vazquez, B., Belosi, F. (2015). Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Separation and Purification Technology, 154, 154-160
  • 15. Md Khan T, Md Mamun, A.A., Mia R., Xu, A., Rashid, M.M. (2021): Effect of Different Solvent Systems on Fiber Morphology and Property of Electrospun PCL Nano Fibers, Tekstil ve Mühendis, 28: 122, 61-76.
  • 16. El-Hadi, A. M., Al-Jabri, F. Y. (2016). Influence of electrospinning parameters on fiber diameter and mechanical properties of poly (3- hydroxybutyrate)(PHB) and polyanilines (PANI) blends. Polymers, 8(3), 97.
  • 17. Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. World scientific.
  • 18. Acevedo, F., Villegas, P., Urtuvia, V., Hermosilla, J., Navia, R. Seeger, M. (2018). Bacterial polyhydroxybutyrate for electrospun fiber production. International journal of biological macromolecules, 106, 692-697.
  • 19. Olkhov, A. A., Staroverova, O., Iordanskii, A., Zaikov, G. (2014). Morphology of electrospun nanofibres of polyhydroxybutyrate. In AIP Conference Proceedings, 1599(1), 558-561). American Institute of Physics.
  • 20. El-Hadi, A. M., Al-Jabri, F. Y. (2016). Influence of electrospinning parameters on fiber diameter and mechanical properties of poly (3- hydroxybutyrate)(PHB) and polyanilines (PANI) blends. Polymers, 8(3), 97.
  • 21. Mottin, A. C., Ayres, E., Oréfice, R. L., Câmara, J. J. D. (2016). What changes in poly (3-hydroxybutyrate)(PHB) when processed as electrospun nanofibers or thermo-compression molded film?. Materials Research, 19, 57-66.
  • 22. Hojat, N., Gentile, P., Ferreira, A. M., Šiller, L. (2023). Automatic pore size measurements from scanning electron microscopy images of porous scaffolds. Journal of Porous Materials, 30(1), 93-101.
  • 23. ImageJ User Guide, 30-Analyze, https://imagej.nih.gov/ ij/docs/ guide/146-30.html, Erişim Tarihi: 05.07.2023
  • 24. Halabalová, V., Šimek, L., Dostál, J., Bohdanecký, M. (2004). Note on the relation between the parameters of the Mark-Houwink-Kuhn- Sakurada equation. International Journal of Polymer Analysis and Characterization, 9(1-3), 65-75.
  • 25. Fong, H., Chun, I., Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.
  • 26. Zeng, J., Haoqing, H., Schaper, A., Wendorff, J., Greiner, A. (2003). Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers, 3(1), 009.
  • 27. Ol’khov, A. A., Staroverova, O. V., Gol’dshtrakh, M. A., Khvatov, A. V., Gumargalieva, K. Z., Iordanskii, A. L. (2016). Electrospinning of biodegradable poly-3-hydroxybutyrate. Effect of the characteristics of the polymer solution. Russian Journal of Physical Chemistry B, 10, 830-838.
  • 28. Sombatmankhong, K., Suwantong, O., Waleetorncheepsawat, S., Supaphol, P. (2006). Electrospun fiber mats of poly (3 hydroxybutyrate), poly (3 hydroxybutyrate co 3 hydroxyvalerate), and their blends. Journal of Polymer Science Part B: Polymer Physics, 44(19), 2923-2933.
  • 29. Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48(23), 6913-6922.
  • 30. Garg, K., Bowlin, G. L. (2011). Electrospinning jets and nanofibrous structures. Biomicrofluidics, 5(1).
  • 31. Reneker, D. H., Kataphinan, W., Theron, A., Zussman, E., Yarin, A. L. (2002). Nanofiber garlands of polycaprolactone by electrospinning. Polymer, 43(25), 6785-6794.
  • 32. Tan, S. H., Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Systematic parameter study for ultrafine fiber fabrication via electrospinning process. Polymer, 46(16), 6128-6134.
  • 33. Qin, X., & Wu, D. (2012). Effect of different solvents on poly (caprolactone)(PCL) electrospun nonwoven membranes. Journal of thermal analysis and calorimetry, 107(3), 1007-1013.
  • 34. Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030.
  • 35. El-Hadi, A. M., & Al-Jabri, F. Y. (2016). Influence of electrospinning parameters on fiber diameter and mechanical properties of poly (3-hydroxybutyrate)(PHB) and polyanilines (PANI) blends. Polymers, 8(3), 97.
  • 36. Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.
  • 37. Sombatmankhong, K., Sanchavanakit, N., Pavasant, P., Supaphol, P. (2007). Bone scaffolds from electrospun fiber mats of poly (3- hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer, 48(5), 1419-1427.
  • 38. Kadam, V. V., Wang, L., Padhye, R. (2018). Electrospun nanofibre materials to filter air pollutants–A review. Journal of Industrial Textiles, 47(8), 2266-2267.
  • 39. Conti, D. S., Yoshida, M. I., Pezzin, S. H., Coelho, L. A. F. (2007). Phase behavior of poly (3-hydroxybutyrate)/poly (3- hydroxybutyrate-co-3-hydroxyvalerate) blends. Fluid Phase Equilibria, 261(1-2), 79-84.
APA Akdag H, Duzyer Gebizli S, HOCKENBERGER A (2023). PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. , 171 - 179. 10.7216/teksmuh.1268253
Chicago Akdag Hatice Aybige,Duzyer Gebizli Sebnem,HOCKENBERGER ASLI PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. (2023): 171 - 179. 10.7216/teksmuh.1268253
MLA Akdag Hatice Aybige,Duzyer Gebizli Sebnem,HOCKENBERGER ASLI PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. , 2023, ss.171 - 179. 10.7216/teksmuh.1268253
AMA Akdag H,Duzyer Gebizli S,HOCKENBERGER A PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. . 2023; 171 - 179. 10.7216/teksmuh.1268253
Vancouver Akdag H,Duzyer Gebizli S,HOCKENBERGER A PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. . 2023; 171 - 179. 10.7216/teksmuh.1268253
IEEE Akdag H,Duzyer Gebizli S,HOCKENBERGER A "PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS." , ss.171 - 179, 2023. 10.7216/teksmuh.1268253
ISNAD Akdag, Hatice Aybige vd. "PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS". (2023), 171-179. https://doi.org/10.7216/teksmuh.1268253
APA Akdag H, Duzyer Gebizli S, HOCKENBERGER A (2023). PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. Tekstil ve Mühendis, 30(131), 171 - 179. 10.7216/teksmuh.1268253
Chicago Akdag Hatice Aybige,Duzyer Gebizli Sebnem,HOCKENBERGER ASLI PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. Tekstil ve Mühendis 30, no.131 (2023): 171 - 179. 10.7216/teksmuh.1268253
MLA Akdag Hatice Aybige,Duzyer Gebizli Sebnem,HOCKENBERGER ASLI PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. Tekstil ve Mühendis, vol.30, no.131, 2023, ss.171 - 179. 10.7216/teksmuh.1268253
AMA Akdag H,Duzyer Gebizli S,HOCKENBERGER A PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. Tekstil ve Mühendis. 2023; 30(131): 171 - 179. 10.7216/teksmuh.1268253
Vancouver Akdag H,Duzyer Gebizli S,HOCKENBERGER A PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS. Tekstil ve Mühendis. 2023; 30(131): 171 - 179. 10.7216/teksmuh.1268253
IEEE Akdag H,Duzyer Gebizli S,HOCKENBERGER A "PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS." Tekstil ve Mühendis, 30, ss.171 - 179, 2023. 10.7216/teksmuh.1268253
ISNAD Akdag, Hatice Aybige vd. "PRODUCTION AND CHARACTERIZATION OF PHB, PHBV ELECTROSPUN FIBERS AND THEIR BLENDS". Tekstil ve Mühendis 30/131 (2023), 171-179. https://doi.org/10.7216/teksmuh.1268253