Yıl: 2023 Cilt: 6 Sayı: 1 Sayfa Aralığı: 655 - 681 Metin Dili: Türkçe DOI: 10.47495/okufbed.1083624 İndeks Tarihi: 31-10-2023

Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi

Öz:
Minyatürleşen enerji sistemleri ve yüksek güçlü elektronik aletler soğutma kapasitesi yüksek olan sistemlerin kullanımını gerektirmektedir. Çarpan jet-çapraz akıştan oluşan birleşik jet etkisi mikroçip elektronik elemanlarının soğutma performansını artırıcı bir etkiye sahiptir. Bu çalışmada, kanallarda bulunan sabit 1000 W/m2 ısı akılı küp ve oyuklu desenlerin su ve %0,02 hacimsel nanoparçacık konsantrasyonlu GO (Grafen Oksit)-Su nanoakışkanı kullanılarak birleşik jet akışı ile soğutulması sayısal olarak analiz edilmiştir. Sayısal çalışma, sürekli ve üç boyutlu olarak k-ε türbülans modelli Ansys-Fluent programının kullanılmasıyla gerçekleştirilmiştir. Nanoakışkanın termofiziksel özellikleri deneysel olarak elde edilmiştir. Literatürdeki çalışmalar da göz önüne alınarak kanal boyutlarına uygun olacak şekilde kanallara üçer adet desenli yüzey yerleştirilmiştir. Kanallara ayrıca jet girişinden itibaren D jet giriş çapı ölçüsünde sabit bir uzaklıkta (N) 90o açılı kanatçık eklenmiştir. Kanal yükseklikleri 3D ve 6D iken akışkanların Re sayısı aralığı 5000-9000’ dir. Çalışmadan elde edilen sonuçların doğruluğu ve kabul edilebilirliği deneysel araştırmalar sonucu elde edilen eşitlik kullanılarak kanıtlanmıştır. Çalışmanın sonuçları, kanallardaki her bir desen için ortalama Nu sayısı ve yüzey sıcaklığının değişimleri olarak su ve nanoakışkan için kanatçıksız ve kanatçıklı durumlarda karşılaştırmalı olarak incelenmiştir. Ayrıca, birleşik jet nanoakışkan akışının hız ve sıcaklık konturu dağılımları jet-desen arası etkileşimler de göz önüne alınarak farklı kanal yükseklikleri için sunulmuştur. Bununla birlikte, kanallardaki her üç desenli yüzeyin tümü için farklı Reynolds sayılarında performans değerlendirme sayıları (PEC) ve ortalama Nu sayısı (Num) ve yüzey sıcaklık değerleri (Tm) Re = 9000 için değerlendirilmiştir. Re = 9000 ve H = 3D için GO-Su nanoakışkanlı kanatçıklı birleşik jet akışlı kanalda su akışkanlı ve kanatçıksız kanala göre küp ve oyuklu desen yüzeyleri için Num değerinde sırasıyla %45,04 ve %37,11’ lik artışlar elde edilmiştir. Bununla birlikte, Re = 5000 değerinde ve H = 3D yükseklikli kanallarda su akışkanı için PEC sayısı değerlerinin sırasıyla küp ve oyuklu desenli yüzeylerde nanoakışkana göre %1,69 ve %1,74 daha fazla oldukları tespit edilmiştir.
Anahtar Kelime: Çarpan jet-çapraz akışlı birleşik jet Nanoakışkan Mikroçip Soğutma Sayısal ısı transferi

Effect of Graphene Oxide (GO)-Water Nanofluid on Cooling Different Patterned Copper Plates with Combined Jet Flow

Öz:
In this study, the cooling of cube and cavity patterns with constant 1000 W/m2 heat flux in the channels by combined jet flow using water and GO (Graphene Oxide)-Water nanofluid with 0.02% volumetric nanoparticle concentration was numerically analyzed. The numerical study was carried out steady and in three dimensions by using the Ansys-Fluent program with k-ε turbulence model. The thermophysical properties of the nanofluid were obtained experimentally. In addition, 90o angled fins have been added to the channels at a fixed distance (N) in the size of the D jet inlet diameter from the jet inlet. While the channel heights are 3D and 6D, the Re number range of the fluids is 5000-9000. The accuracy and acceptability of the results obtained from the study has been proven by using the equation obtained as a result of experimental research. The results of the study were examined comparatively for water and nanofluid in the without fin and with fin conditions as the mean Nu number and surface temperature variations for each pattern in the channels. In addition, velocity and temperature contour distributions of the combined jet nanofluid flow were presented for different channel heights, taking into account the jet-pattern interactions. However, performance evaluation numbers (PEC) at different Reynolds numbers and average Nu number (Num) and surface temperature values (Tm) were evaluated for Re = 9000 for all three patterned surfaces in the channels. For Re = 9000 and H = 3D, 45.04% and 37.11% increases in Num value were obtained for cube and cavity pattern surfaces in the combined jet flow channel with GO-Water nanofluid and fin compared to the water flow and the without fin channel, respectively. However, PEC number values for water fluid in channels with Re = 5000 and H = 3D heights were found to be 1.69% and 1.74% higher than according to nanofluid on cubed and cavity patterned surfaces, respectively.
Anahtar Kelime: Combined jet with impinging jet-cross flow Nanofluid Mikrochip Cooling Numerical heat transfer

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abdullah MF, Zulkifli R, Harun Z, Abdullah S, Wan Ghopa WA, Najm AS, Sulaiman NH. Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin ımpingement jet of a heated aluminium plate. Micromachines 2019; 10: 176.
  • Alnak DE Thermohydraulic performance study of different square baffle angles in cross-corrugated channel. Journal of Energy Storage 2020; 28, 101295.
  • Alnak DE., Koca F., Alnak YA. Numerical investigation of heat transfer from heated surfaces of different shapes. Journal of Engineering Thermophysics 2021; 30: 494-507.
  • Chang TB., Yang YK. Heat transfer performance of jet impingement flow boiling using Al2O3-water nanofluid. Journal of Mechanical Science and Technology 2014; 28(4): 1559-1566.
  • Dal A., Kılıç M., Akyüz A.Ö., Tuncer A.D., Gungor A. Effects of lubricant fluid with nanoparticle additive on the load capacity of a hydrostatic journal bearing. El-Cezerî Journal of Science and Engineering 2020; 7(2): 753-762.
  • Datta A., Jaiswal A., Halder P. Heat transfer analysis of slot jet impingement using Nano fluid on convex surface. IOP Conference Series-Materials Science and Engineering 2018; 402: 012098.
  • Demircan T. Numerical analysis of cooling an electronic circuit component with cross flow and jet combination. Journal of Mechanics 2019; 35(3); 395-404.
  • Genc MS., Kaynak U., Lock GD. Flow over an aerofoil without and with a leading- edge slat at a transitional Reynolds number. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2009; 223: 217-231.
  • Genç MS. Numerical simulation of flow over a thin aerofoil at a high Reynolds number using a transition model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2010; 24: 2155-2164.
  • Genç M.S., Kaynak Ü., Yapıcı H. Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. European Journal of Mechanics B/Fluids 2011; 30: 218-235.
  • Hadipour A., Zargarabadi MR. Heat transfer and flow characteristics of impinging jet on a concave surface at small nozzle to surface distances. Applied Thermal Engineering 2018; 138: 534-541.
  • Hajjar Z., Rashidi A., Ghozatloo A. Enhanced thermal conductivities of graphene oxide nanofluids. International Communications in Heat and Mass Transfer 2014; 57: 128-131.
  • Hummers WS., Offeman RE. Preparation of graphitic oxide. Journal of American Chemical Society 1958; 80: 1339.
  • Incropera FP., Dewit DP., Bergman TL., Lavine AS. Fundamentals of heat and mass transfer. 6th Ed. In: John Wiley&Sons; 2007.
  • Jalali E., Sajadi SM., Ghaemi F., Baleanu D. Numerical analysis of the effect of hot dent infusion jet on the fluid flow and heat transfer rate through the microchannel in the presence of external magnetic field. Journal of Thermal Analysis and Calorimetry 2022; 147: 8397-8409.
  • Karabulut K. Heat transfer improvement study of electronic component surfaces using air jet impingement. Journal of Computational Electronics 2019; 18: 1259-1271.
  • Karabulut K., Alnak DE. Study of cooling of the varied designed warmed surfaces with an air jet impingement. Pamukkale University Journal of Engineering Sciences 2020; 26(1): 88-98.
  • Karabulut K., Buyruk E., Kilinc K. Experimental and numerical investigation of convection heat transfer in a circular copper tube using graphene oxide nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2020; 42: 230.
  • Karabulut K., Alnak DE. Dikdörtgen bir kanaldaki farklı desenli yüzey geometrilerinin ısı transferine olan etkilerinin incelenmesi. Tesisat Mühendisliği Dergisi 2021; 183: 37-49.
  • Karabulut K., Alnak DE. Investigation of graphene oxide-distilled water nanofluids with consideration of heat transfer and flow structure for backward-facing step flow. Journal of Engineering Thermophysics 2021; 30(2): 300-316.
  • Karabulut K., Alnak DE. Investigation of the variation of cooling performance with the channel height in a channel having impinging jet-cross flow. ISPEC 12th International Conference on Engineering&Natural Sciences, 24-25 December 2021, sayfa no: 273-290, Bingöl.
  • Kılıç M. Elektronik sistemlerin soğutulmasında nanoakışkanlar ve çarpan jetlerin müşterek etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2018; 33(3): 121- 132.
  • Kılıc M., Ullah A. Numerical investigation of effect of different parameter on heat transfer for a crossflow heat exchanger by using nanofluids. Journal of Thermal Engineering 2021; 7(14): 1980-1989.
  • Kılıc M., Abdulvahitoglu A. Numerical investigation of heat transfer at a rectangular channel with combined effect of nanofluids and swirling jets in a vehicle radiator. Thermal Science 2019; 23(6A): 3627-3637.
  • Kilic M., Calisir T., Baskaya S. Experimental and numerical study of heat transfer from a heated fat plate in a rectangular channel with an impinging air jet. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2016; 39(1): 329–344.
  • Kilic M., Calisir T., Baskaya S. Experımental and numerical investigation of vortex promoter effects on heat transfer from heated electronic components in a rectangular channel with an impinging jet. Heat Transfer Research 2017; 48(5): 435-463.
  • Kumar D., Zunaid M., Gautam S. Heat sink analysis in jet impingement with air foil pillars and nanoparticles. MaterialsToday: Proceedings 2021; 46(20): 10752-10756.
  • Lakshminarayanan V., Sriraam N. The effect of temperature on the reliability of electronic components. IEEE International Conference on Electrical, Computer and Communication Technologies (CONECCT), 6-7 January 2014, sayfa no:1-6, India.
  • Ma CF., Bergles AE. Boiling jet impingement cooling of simulated microelectronic chips. Heat Transfer In Electronic Equipment HTD 1983; 28: 5-12.
  • Maghrabie HM., Attalla M., Fawaz HE., Khalil M. Numerical investigation of heat transfer and pressure drop of in-line array of heated obstacles cooled by jet impingement in cross-flow. Alexandria Engineering Journal 2017; 56: 285-296.
  • Masip Y., Rivas A., Larraona GS., Anton R., Ramos JC., Moshfegh B. Experimental study of the turbulent flow around a single wall-mounted cube exposed to a cross-flow and an impinging jet. International Journal of Heat and Fluid Flow 2012; 38: 50-71.
  • Mergen S. Kanal içi akış ve çarpan jet ile birlikte elektronik eleman soğutulmasının sayısal olarak incelenmesi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, sayfa no: 48, Ankara, Türkiye, 2014.
  • Pak BC., Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 1998; 11(2): 151-170.
  • Saleha N., Fadela N., Abbes A. Improving cooling effectiveness by use chamfers on the top of electronic components. Microelectronics Reliability 2015; 55: 1067-1076.
  • Selimefendigil F., Chamkha AJ. Cooling of an isothermal surface having a cavity component by using CuO-water nano-jet. International Journal of Numerical Methods for Heat & Fluid Flow 2020; 30(4), 2169-2191.
  • Shi W., Li F., Lin Q., Fang G. Experimental study on instability of round nanofluid jets at low velocity. Experimental Thermal and Fluid Science 2021; 120, 110253.
  • Öztürk SM., Demircan T. Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-flow combination. Journal of the Faculty of Engineering and Architecture of Gazi University 2022; 37(1): 57-74.
  • Taylor JR. An introduction to error analysis: the study of uncertainties in physical measurements, University Science Books, Sausalito; 1997.
  • Teamah MA., Dawood MM., Shehata A. Numerical and experimental investigation of flow structure and behaviour of nanofluids flow impingement on horizontal flat plate. Experimental Thermal and Fluid Science 2015; 74: 235-246.
  • Wang SJ., Mujumdar AS. A comparative study of five low Reynolds number k-ε models for impingement heat transfer. Applied Thermal Engineering 2005; 25: 31-44.
APA KARABULUT K, Alnak D (2023). Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. , 655 - 681. 10.47495/okufbed.1083624
Chicago KARABULUT KORAY,Alnak Dogan Engin Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. (2023): 655 - 681. 10.47495/okufbed.1083624
MLA KARABULUT KORAY,Alnak Dogan Engin Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. , 2023, ss.655 - 681. 10.47495/okufbed.1083624
AMA KARABULUT K,Alnak D Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. . 2023; 655 - 681. 10.47495/okufbed.1083624
Vancouver KARABULUT K,Alnak D Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. . 2023; 655 - 681. 10.47495/okufbed.1083624
IEEE KARABULUT K,Alnak D "Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi." , ss.655 - 681, 2023. 10.47495/okufbed.1083624
ISNAD KARABULUT, KORAY - Alnak, Dogan Engin. "Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi". (2023), 655-681. https://doi.org/10.47495/okufbed.1083624
APA KARABULUT K, Alnak D (2023). Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), 6(1), 655 - 681. 10.47495/okufbed.1083624
Chicago KARABULUT KORAY,Alnak Dogan Engin Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online) 6, no.1 (2023): 655 - 681. 10.47495/okufbed.1083624
MLA KARABULUT KORAY,Alnak Dogan Engin Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), vol.6, no.1, 2023, ss.655 - 681. 10.47495/okufbed.1083624
AMA KARABULUT K,Alnak D Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online). 2023; 6(1): 655 - 681. 10.47495/okufbed.1083624
Vancouver KARABULUT K,Alnak D Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online). 2023; 6(1): 655 - 681. 10.47495/okufbed.1083624
IEEE KARABULUT K,Alnak D "Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi." Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), 6, ss.655 - 681, 2023. 10.47495/okufbed.1083624
ISNAD KARABULUT, KORAY - Alnak, Dogan Engin. "Farklı Desenli Bakır Plakaların Birleşik Jet Akışı ile Soğutulmasında Grafen Oksit (GO)-Su Nanoakışkanının Etkisi". Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online) 6/1 (2023), 655-681. https://doi.org/10.47495/okufbed.1083624