Yıl: 2023 Cilt: 47 Sayı: 5 Sayfa Aralığı: 814 - 836 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3582 İndeks Tarihi: 21-11-2023

Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block

Öz:
Phthalocyanines are tetrapyrrolic artificial porphyrinoids that play major roles in advanced biological and technological applications. Research on this family of dyes is particularly active in Türkiye, with many derivatives being prepared from 4,5-dihexyl- thiophthalonitrile DiSHexPN, which is one of the most popular noncommercially available building blocks for phthalocyanines. This review summarizes the phthalocyanines and their versatile properties and applications that have been published since 1994, when the synthesis of DiSHexPN was first described, to emphasize the importance of this building block in plentiful applications, all with bio- medical or technological impact.
Anahtar Kelime: Phthalocyanine phthalonitrile hexylthio

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] De la Torre G, Martinez-Diaz MC, Torres T. Synthesis of fused polynuclear systems based on phthalocyanine and triazolehemiporphyrazine units. Journal of Porphyrins and Phthalocyanines 1999; 3: 560-568. https://doi.org/10.1002/(SICI)1099-1409(199908/10)3:6/7<560::AID- JPP175>3.0.CO;2-B
  • [2] Gürek AG, Bekaroğlu Ö. Octakis(alkylthio)-substituted phthalocyanines and their interactions with silver(I) and palladium(II) ions. Journal of the Chemical Society, Dalton Transactions 1994; 9: 1419-1423. https://doi.org/10.1039/DT9940001419
  • [3] Wöhrle D, Eskes M, Shigehara K, Yamada A. A simple synthesis of 4,5-disubstituted 1,2-dicyanobenzenes and 2,3,9,10,16,17,23,24-octasubstituted phthalocyanine. Synthesis 1993; 2: 194-196. http://dx.doi.org/10.1055/s-1993-25825
  • [4] Zorlu Y, İşci Ü, Ün İ, Kumru U, Dumoulin F et al. Comparative structural analysis of 4,5- and 3,6-dialkylsulfanylphthalonitriles of different bulkiness. Structural Chemistry 2013; 24: 1027-2038. https://doi.org/10.1007/s11224-012-0126-8
  • [5] Önal E, Okyay TM, Ekineker G, Işci Ü, Ahsen V et al. Sulfanyl vs sulfonyl, 4,5- vs 3,6- position. How structural variations in phthalonitrile substitution affect their infra-red, crystallographic and Hirshfeld surface analyses. Journal of Molecular Structure 2018; 1155: 310-319. https://doi.org/10.1016/j.molstruc.2017.10.069
  • [6] Sezer E, Ustamehmetoğlu B, Altuntaş Bayır Z, Çoban K, Kalkan A. Corrosion inhibition effect of 4-(2-diethylamino-ethylsulfonyl)- phthalonitrile and 4,5-bis(hexylsulfonyl)-phthalonitrile. International Journal of Electrochemistry 2011; 2011: 235360. https://doi. org/10.4061/2011/235360
  • [7] Özkaya AR, Gürek AG, Gül A, Bekaroglu Ö. Electrochemical and spectral properties of octakis(hexylthio)-substituted phthalocyanines. Polyhedron 1997; 16: 1877-1883. https://doi.org/10.1016/S0277-5387(96)00486-X
  • [8] Lux A, Rozenberg GG, Petritsch K, Moratti SC, Holmes AB et al. A series of novel liquid crystalline octakis(alkylthio)-substituted phthalocyanines. Synthetic Metals 1999; 102: 1527-1528. https://doi.org/10.1016/S0379-6779(98)01149-7
  • [9] Basova TV, Gürek AG, Ahsen V. Investigation of liquid-crystalline behavior of nickel octakisalkylthiophthalocyanines and orientation of their films. Materials Science and Engineering C 2002; 22: 99-104. https://doi.org/10.1016/S0928-4931(02)00051-6 [10] Basova T, Kol’tsov E, Gürek AG, Atilla D, Ahsen V et al. Investigation of liquid-crystalline behaviour of copper octakisalkylthiophthalocyanine and its film properties. Materials Science and Engineering C 2008; 28: 303-308. https://doi.org/10.1016/j.msec.2007.02.003
  • [11] Basova T, Hassan A, Durmus M, Gürek AG, Ahsen V. Liquid crystalline metal phthalocyanines: structural organization on the substrate surface. Coordination Chemistry Reviews 2016; 310: 131-153. https://doi.org/10.1016/j.ccr.2015.11.005
  • [12] Paul S, Paul D, Basova T, Ray AK. Studies of adsorption and viscoelastic properties of proteins onto liquid crystal phthalocyanine surface using quartz crystal microbalance with dissipation technique. Journal of Physical Chemistry C 2008; 112: 11822-11830. https://doi. org/10.1021/jp800975t
  • [13] Basova T, Paul S, Paul D, Vadgama P, Gürek AG et al. Liquid crystalline phthalocyanine thin films as nanoscale substrates for protein adsorption. Journal of Bionanoscience 2008; 2: 114-118. https://doi.org/10.1166/jbns.2008.031
  • [14] Paul S, Paul D, Basova T, Ray AK. Characterisation of protein adsorption on different liquid crystal phthalocyaninethin films. IET Nanobiotechnology 2010; 4: 1-9. https://doi.org/10.1049/iet-nbt.2009.0011
  • [15] Paolesse R, Nardis S, Monti D, Stefanelli M, Di Natale C. Porphyrinoids for Chemical Sensor Applications. Chemical Reviews 2017; 117: 2517-2583. https://doi.org/10.1021/acs.chemrev.6b00361
  • [16] Zhou R, Josse F, Göpel W, Öztürk ZZ, Bekaroğlu Ö. Phthalocyanines as sensitive materials for chemical sensors. Applied Organometallic Chemistry 1996; 10: 557-577. https://doi.org/10.1002/(SICI)1099-0739(199610)10:8<557::AID-AOC521>3.0.CO;2-3 [17] G o u n d e n D, Nombona N, van Zyl WE. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coordination Chemistry Reviews 2020; 420: 213359. https://doi.org/10.1016/j.ccr.2020.213359
  • [18] Öztürk ZZ, Kılınç N, Atilla D, Gürek AG, Ahsen V. Recent studies chemical sensors based on phthalocyanines. Journal of Porphyrins and Phthalocyanines 2009; 13: 1179-1187. https://doi.org/10.1142/S1088424609001522
  • [19] Klyamer D, Shutilov R, Basova T. Recent advances in phthalocyanine and porphyrin-based materials as active layers for nitric oxide chemical sensors. Sensors 2022; 22: 895. https://doi.org/10.3390/s22030895
  • [20] KılınçN,AtillaD,ÖztürkS,GürekAG,ÖztürkZZetal.Oxidizinggassensingpropertiesofmesogeniccopperoctakisalkylthiophthalocyanine chemoresistive sensors. Thin Solid Films 2009; 517: 6206-6210. https://doi.org/10.1016/j.tsf.2009.04.005
  • [21] Mashazi P, Antunes E, Nyokong T. Probing electrochemical and electrocatalytic properties of cobalt(II) and manganese(III) octakis(hexylthio) phthalocyanine as self-assembled monolayers. Journal of Porphyrins and Phthalocyanines 2010; 14: 932-947. https:// doi.org/10.1142/S108842461000277X
  • [22] Topal SZ, İşci Ü, Kumru U, Atilla D, Gürek AG et al. Modulation of the electronic and spectroscopic properties of Zn(II) phthalocyanines by their substitution pattern. Dalton Transactions 2014; 43: 6897-6908. https://doi.org/10.1039/C3DT53410C
  • [23] Garifullin R, Erkal TS, Tekin S, Ortaç B, Gurek AG et al. Encapsulation of a zinc phthalocyanine derivative in self-assembled peptide nanofibers. Journal of Materials Chemistry 2012; 22: 2553-2559. https://doi.org/10.1039/C1JM14181C
  • [24] Bharmoria P, Ghasemi S, Edhborg F, Losantos R, Wang Z et al. Far-red triplet sensitized Z-to-E photoswitching of azobenzene in bioplastics. Chemical Science 2022; 13: 11904-11911. https://doi.org/10.1039/D2SC04230D
  • [25] Arslanoglu Y, Sevim AM, Hamuryudan E, Gul A. Near-IR absorbing phthalocyanines. Dyes and Pigments 2006; 68: 129-132. https://doi. org/10.1016/j.dyepig.2005.01.019
  • [26] Canlıca M, Nyokong T. Synthesis and photophysical properties of metal free, titanium, magnesium and zinc phthalocyanines substituted with a single carboxyl and hexylthio groups. Polyhedron 2011; 30: 1975-1981. https://doi.org/10.1016/j.poly.2011.05.011
  • [27] Mayukh M, Sema CM, Roberts JM, McGrath DV. Solvent-free synthesis of soluble, near-IR absorbing titanyl phthalocyanine derivatives. Journal of Organic Chemistry 2010; 75: 7893-7896. https://doi.org/10.1021/jo1011637
  • [28] Ateş Turkmen T, Zeng L, Cui Y, Fidan I, Dumoulin F et al. Effect of the substitution pattern (peripheral vs non-peripheral) on the spectroscopic, electrochemical, and magnetic properties of octahexylsulfanyl copper phthalocyanines. Inorganic Chemistry 2018; 57: 6456-6465. https://doi.org/10.1021/acs.inorgchem.8b00528
  • [29] Kılınç N, Sennik E, Atilla D, Gürek AG, Ahsen V et al. Effect of ambient atmosphere on photoconductivity of TiO2 nanotube-CuPc heterojunction. Science of Advanced Materials 2013; 5: 1-7. https://doi.org/10.1166/sam.2013.1467
  • [30] Dumoulin F, Zorlu Y, Ayhan MM, Hirel C, İsci Ü et al. A first ABAC phthalocyanine. Journal of Porphyrins and Phthalocyanines 2009; 13: 161-165. https://doi.org/10.1142/S1088424609000140
  • [31] Chow SY, Ng DK. Synthesis of an ABCD-type phthalocyanine by intramolecular cyclization reaction. Organic Letters 2016; 18: 3234-3237. https://doi.org/10.1021/acs.orglett.6b01489
  • [32] Nemykin VN, Dudkin SV, Dumoulin F, Hirel C, Gurek AG et al. Synthetic approaches to asymmetric phthalocyanines and their analogues. Arkivoc 2014; 142-204. https://doi.org/10.3998/ark.5550190.p008.412
  • [33] Kobayashi N, Kondo R, Nakajima S, Osa T. New route to unsymmetrical phthalocyanine analogs by the use of structurally distorted subphthalocyanines. Journal of the American Chemical Society 1990; 112: 9640-9641. https://doi.org/10.1021/ja00182a034
  • [34] Ekren SB, Dumoulin F, Musluoğlu E, Ahsen V, Güngör Ö. A3B and ABAB aminophthalocyanines: building blocks for dimeric and polymeric constructs. Journal of Porphyrins and Phthalocyanines 2019; 23: 1448-1454. https://doi.org/10.1142/S1088424619501499
  • [35] Gürsoy S, Altuntaş Bayır Z, Hamuryudan E, Bekaroğlu Ö. Synthesis and characterization of new unsymmetrically substituted phthalocyanines. Monatshefte für Chemie/Chemical Monthly 2000; 131: 287-292. https://doi.org/10.1007/s007060070104
  • [36] Canlıca M. Synthesis and characterization of a new asymmetrical phthalocyanine with Zn(II), Ni(II) and Co(II). Asian Journal of Chemistry 2008; 20: 776-782.
  • [37] Hamuryudan E. Synthesis and solution properties of phthalocyanines substituted with four crown ethers. Dyes and Pigments 2006; 68: 151-157. https://doi.org/10.1016/j.dyepig.2005.01.018
  • [38] Arslanoğlu Y, Koca A, Hamuryudan E. The synthesis and electrochemical study of novel phthalocyanines substituted with a crown ether and alkyl chains. Dyes and Pigments 2011; 88: 135-142. https://doi.org/10.1016/j.dyepig.2010.05.013
  • [39] Batat P, Bayar M, Pur B, Çoker E, Ahsen V et al. The optical characterization of metal-mediated aggregation behaviour of amphiphilic Zn(II) phthalocyanines. Physical Chemistry Chemical Physics 2016; 18: 15574-15583. https://doi.org/10.1039/C6CP01093H
  • [40] Kalkan A, Koca A, Altuntaş Bayır Z. Unsymmetrical phthalocyanines with alkynyl substituents. Polyhedron 2004; 23: 3155-3162. https:// doi.org/10.1016/j.poly.2004.09.021
  • [41] Özçeşmeci İ, Kalkan Burat A, Altuntaş Bayır Z. Synthesis and photophysical properties of novel unsymmetrical metal-free and metallophthalocyanines. Journal of Organometallic Chemistry 2014; 750: 125-131. https://doi.org/10.1016/j.jorganchem.2013.11.004
  • [42] Altuntaş Bayır Z, Merey Ş, Hamuryudan E. Metal-containing phthalocyanines substituted with one branched bulky moiety and six alkylthio groups. Monatshefte für Chemie/Chemical Monthly 2003; 134: 1027-1031. https://doi.org/10.1007/s00706-003-0004-6
  • [43] Dincer HA, Gül A, Koçak MB. A novel route to 4-chloro-5-alkyl-phthalonitrile and phthalocyanines derived from it. Journal of Porphyrins and Phthalocyanines 2004; 8: 1204-1208. https://doi.org/10.1142/S1088424604000544
  • [44] Uğur AL, Dincer HA, Erdoğmuş A. Synthesis, photophysical and thermal studies of symmetrical and unsymmetrical zinc phthalocyanines. Polyhedron 2012; 31: 431-437. https://doi.org/10.1016/j.poly.2011.09.042
  • [45] Kulaç D, Bulut M, Altındal A, Özkaya AR, Salih B et al. Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III) phthalocyanines. Polyhedron 2007; 26: 5432-5440. https://doi.org/10.1016/j. poly.2007.08.015
  • [46] Burat AK, Karaoğlu HRP. Photophysical properties of a newly synthesized unsymmetrically substituted zinc phthalocyanine. Journal of the Turkish Chemical Society Section A: Chemistry 2021; 8: 623-632. https://doi.org/10.18596/jotcsa.870010 [47] Zhu YJ, Huang JD, Jiang XJ, Sun JC. Novel silicon phthalocyanines axially modified by morpholine: synthesis, complexation with serum protein and in vitro photodynamic activity. Inorganic Chemistry Communications 2006; 9: 473-477. https://doi.org/10.1016/j.inoche.2006.02.014
  • [48] Burat AK, Koca A, Lewtak JP, Gryko DT. Synthesis, physicochemical properties and electrochemistry of morpholine-substituted phthalocyanines. Journal of Porphyrins and Phthalocyanines 2010; 14: 605-614. https://doi.org/10.1142/S108842461000246X
  • [49] Burat AK, Koca A, Lewtak JP, Gryko DT. Preparation, electrochemistry and optical properties of unsymmetrical phthalocyanines bearing morpholine and tert-butylphenoxy substituents. Synthetic Metals 2011; 161: 1537-1545. https://doi.org/10.1016/j.synthmet.2011.05.010
  • [50] Dumrul H, Yüksel F. Synthesis and characterization of novel symmetrical and asymmetrical substituted Zn(II) phthalocyanines. Polyhedron 2013; 63: 83-90. https://doi.org/10.1016/j.poly.2013.07.015
  • [51] Yüksel F, Atilla D, Ahsen V. Synthesis and characterization of liquid crystalline unsymmetrically substituted phthalocyanines. Polyhedron 2007; 26: 4551-4556. https://doi.org/10.1016/j.poly.2007.06.017
  • [52] Bayda M, Dumoulin F, Hug GL, Koput J, Gorniak R et al. Fluorescent H aggregates of an asymmetrically substituted mono-amino Zn(II) phthalocyanine. Dalton Transactions 2017; 46: 1914-1926. https://doi.org/10.1039/C6DT02651F
  • [53] Zucolotto Cocca LH, Ayhan MM, Gürek AG, Ahsen V, Bretonnière Y et al. Mechanism of the Zn(II)phthalocyanines’ photochemical reactions depending on the number of substituents and geometry. Molecules 2016; 21: 635. https://doi.org/10.3390/molecules21050635
  • [54] De la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chemical Communications 2007; 2000-2015. https://doi.org/10.1039/B614234F
  • [55] Schmidt AM, Calvete MJF. Phthalocyanines: an old dog can still have new (photo)tricks. Molecules 2021; 26: 2823. https://doi.org/10.3390/ molecules26092823 [56] Taquet JP, Frochot C, Manneville V, Barberi-Heyob M. Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy. Current Medicinal Chemistry 2007; 14: 1673-1687. https://doi.org/10.2174/092986707780830970
  • [57] Kumru U, Ermeydan MA, Dumoulin F, Ahsen V. Amphiphilic galactosylated phthalocyanines. Journal of Porphyrins and Phthalocyanines 2008; 12: 1090-1095. https://doi.org/10.1142/S1088424608000443
  • [58] Ermeydan MA, Dumoulin F, Basova TV, Bouchu D, Gürek AG et al. Amphiphilic carbohydrate–phthalocyanine conjugates obtained by glycosylation or by azide–alkyne click reaction. New Journal of Chemistry 2010; 34: 1153-1162. https://doi.org/10.1039/B9NJ00634F
  • [59] Dumoulin F, Lafont D, Boullanger P, Mackenzie G, Mehl GH et al. Self-organizing properties of natural and related synthetic glycolipids. Journal of the American Chemical Society 2002; 124: 13737-13748. https://doi.org/10.1021/ja020396
  • [60] Banoub J, Boullanger P, Lafont D. Synthesis of oligosaccharides of 2-amino-2-deoxy sugars. Chemical Reviews 1992; 92: 1167-1195. https://pubs.acs.org/doi/10.1021/cr00014a002
  • [61] Rio S, Beau JM, Jacquinet JC. Synthesis of glycopeptides from the carbohydrate-protein linkage region of proteoglycans. Carbohydrate Research 1991; 219: 71-90. https://doi.org/10.1016/0008-6215(91)89043-F
  • [62] Lee BY, Park SR, Jean HB, Kim KS. A new solvent system for efficient synthesis of 1,2,3-triazoles. Tetrahedron Letters 2006; 47: 5105-5109. https://doi.org/10.1016/j.tetlet.2006.05.079
  • [63] Nyokong T. Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coordination Chemistry Reviews 2007; 251: 1707-1722. https://doi.org/10.1016/j.ccr.2006.11.011
  • [64] Özgür N, Nar I, Gül A, Hamuryudan E. A new unsymmetrical phthalocyanine with a single o-carborane substituent. Journal of Organometallic Chemistry 2015; 781: 53-58. http://dx.doi.org/10.1016/j.jorganchem.2015.01.011
  • [65] Bartelmess J, Ballesteros B, de la Torre G, Kiessling D, Campidelli S et al. Phthalocyanine–pyrene conjugates: a powerful approach toward carbon nanotube solar cells. Journal of the American Chemical Society 2010; 132: 16202-16211. https://doi.org/10.1021/ja107131r
  • [66] Kabay N, Bozer BD, Öztürk Kiraz A, Baygu Y, Kara İ et al. Synthesis, characterization and structural computational investigation of novel Zn(II) phthalocyanines containing peripheral anthracene moieties. Journal of Porphyrins and Phthalocyanines 2019; 23: 943-959. https:// doi.org/10.1142/S1088424619500913
  • [67] Topkaya D, Dumoulin F, Ahsen V, İşci Ü. Axial binding and host–guest interactions of a phthalocyanine resorcinarene cavitand hybrid. Dalton Transactions 2014; 43: 2032-2037. https://doi.org/10.1039/C3DT52732H
  • [68] Jimenez AJ, Krick Calderon RM, Rodriguez-Morgade MS, Guldi DM, Torres T. Synthesis, characterization and photophysical properties of a melamine-mediated hydrogen-bound phthalocyanine–perylenediimide assembly. Chemical Science 2013; 4: 1064-1074. https://doi. org/10.1039/C2SC21773B
  • [69] Ragoussi ME, Ince M, Torres T. Recent advances in phthalocyanine-based sensitizers for dye-sensitized solar cells. European Journal of Organic Chemistry 2013; 29: 6475-6489. https://doi.org/10.1002/ejoc.201301009
  • [70] Urbani M, Ragoussi ME, Nazeeruddin MK, Torres T. Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews 2019; 381: 1-64. https://doi.org/10.1016/j.ccr.2018.10.007
  • [71] Yıldız B, Güzel E, Akyüz D, Arslan BS, Koca A et al. Unsymmetrically pyrazole-3-carboxylic acid substituted phthalocyanine-based photoanodes for use in water splitting photoelectrochemical and dye-sensitized solar cells. Solar Energy 2019; 191: 654-662. https://doi. org/10.1016/j.solener.2019.09.043
  • [72] Yıldız B, Ahmetali E, Arslan BS, Menges N, Nebioğlu M et al. Effect of direct linkage of pyrazole carboxylic acid acceptor/anchoring group on the photovoltaic performance for phthalocyanine-sensitized solar cells. Dyes and Pigments 2022; 206: 110644. https://doi. org/10.1016/j.dyepig.2022.110644
  • [73] Yazıcı A, Ateş D, Bekaroğlu Ö, Kobayashi N. Synthesis and characterization of novel azo-bridged Zn(II) and Co(II) bisphthalocyanines. Journal of Porphyrins and Phthalocyanines 2006; 10: 1140-1144. https://doi.org/10.1142/S1088424606000491
  • [74] Salan Ü, Kobayashi N, Bekaroğlu Ö. Effect of peripheral substitution on the electronic absorption and magnetic circular dichroism (MCD) spectra of metal-free azo-coupled bisphthalocyanine. Tetrahedron Letters 2009; 50: 6775-6778. https://doi.org/10.1016/j.tetlet.2009.09.108
  • [75] Canlıca M, Altındal A, Özkaya AR, Salih B, Bekaroğlu Ö. Synthesis, characterization, and electrochemical, and electrical measurements of novel 4,40-isopropylidendioxydiphenyl bridged bis and cofacial bis-metallophthalocyanines (Zn,Co). Polyhedron 2008; 27: 1883-1890. https://doi.org/10.1016/j.poly.2008.02.031
  • [76] Odabaş Z, Altındal A, Özkaya AR, Bulut M, Salih B et al. Synthesis, characterization, and electrochemical, spectroelectrochemical and electrical measurements of novel ball-type four 1,10-methylenedinaphthalen-2-ol bridged metal-free, zinc(II) and cobalt(II), and metal-free clamshell phthalocyanines. Polyhedron 2007; 26: 695-707. https://doi.org/10.1016/j. poly.2006.08.039
  • [77] Ceyhan T, Altındal A, Özkaya AR, Çelikbıçak Ö, Salih B et al. Synthesis, characterization and electrochemical properties of novel metal free and zinc(II) phthalocyanines of ball and clamshell types. Polyhedron 2007; 26: 4239-4249. https://doi.org/10.1016/j.poly.2007.05.028
  • [78] Ozan N, Bekaroğlu Ö. Synthesis and characterization of a triazine containing three phthalocyanines. Polyhedron 2003; 22: 819-823. https://doi.org/10.1016/S0277-5387(03)00003-2
  • [79] Ceyhan T, Korkmaz M, Kutluay T, Bekaroğlu Ö. Synthesis, characterization and EPR spectroscopy of novel s-triazines bearing three oxygen- linked phthalocyanines. Journal of Porphyrins and Phthalocyanines 2004; 8: 1383-1389. https://doi.org/10.1142/S108842460400074X
  • [80] Şen P, Duludağ F, Salih B, Özkaya AR, Bekaroğlu Ö. Synthesis and electrochemical, electrochromic and electrical properties of novel s-triazine bridged trinuclear Zn(II), Cu(II) and Lu(III) and a tris double-decker Lu(III) phthalocyanines. Synthetic Metals 2011; 161: 1245-1254. https://doi.org/10.1016/j.synthmet.2011.04.012
  • [81] Özer M, Altındal A, Özkaya AR, Bulut M, Bekaroğlu Ö. Synthesis, characterization, and electrical, electrochemical and gas sensing properties of a novel cyclic borazine derivative containing three phthalocyaninato zinc(II) macrocycles. Synthetic Metals 2005; 155: 222- 231. https://doi.org/10.1016/j.synthmet.2005.08.004
  • [82] Ceyhan C, Altındal A, Erbil MK, Özer Bekaroğlu Ö. Synthesis, characterization, conduction and gas sensing properties of novel multinuclear metallo phthalocyanines (Zn, Co) with alkylthio substituents. Polyhedron 2006; 25: 737-746.
  • [83] Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition 2001; 40: 2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 TOPKAYA et al. / Turk J Chem835
  • [84] Dumoulin F, Ahsen V. Click chemistry: the emerging role of the azide-alkyne Huisgen dipolar addition in the preparation of substituted tetrapyrrolic derivatives. Journal of Porphyrins and Phthalocyanines 2011; 15: 481-504. https://doi.org/10.1142/S1088424611003434
  • [85] Acherar S, Colombeau L, Frochot C, Vanderesse R. Synthesis of porphyrin, chlorin and phthalocyanine derivatives by azide-alkyne click chemistry. Current Medicinal Chemistry 2015; 22: 3217-3254. https://doi.org/10.2174/0929867322666150716115832
  • [86] Gonidec M, Biagi R, Corradini V, Moro F, De Renzi V et al. Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. Journal of the American Chemical Society 2011; 133: 6603-6612. https://doi.org/10.1021/ja109296c
  • [87] Ishikawa N, Sugita M, Ishikawa T, Koshihara SY, Kaizu Y. Lanthanide double-decker complexes functioning as magnets at the single- molecular level. Journal of the American Chemical Society 2003; 125: 8694-8695. https://doi.org/10.1021/ja029629n
  • [88] Gürek AG, Ahsen V, Luneau D, Pécaut P. Synthesis, structure, spectroscopic properties, and magnetic properties of an octakis(alkylthio)-substituted lutetium(III) bisphthalocyanine. Inorganic Chemistry 2001; 40: 4793-4797. https://doi.org/10.1021/ic010240v
  • [89] De Cian A, Moussavi M, Fischer J, Weiss R. Synthesis, structure, and spectroscopic and magnetic properties of lutetium (III) phthalocyanine derivatives: LuPc2.CH2Cl2 and [LuPc(OAc)(H2O)2].H2O.2CH3OH. Inorganic Chemistry 1985; 24: 3162-3167. https://doi.org/10.1021/ ic00214a016
  • [90] Gürek AG, Basova T, Luneau D, Lebrun C, Kol’tsov E et al. Synthesis, structure, and spectroscopic and magnetic properties of mesomorphic octakis(hexylthio)-substituted phthalocyanine rare-earth metal sandwich complexes. Inorganic Chemistry 2006; 45: 1667-1676. https:// doi.org/10.1021/ic051754n
  • [91] Basova T, Jushina I, Gürek AG, Ahsen V, Ray AK. Use of the electrochromic behaviour of lanthanide phthalocyanine films for nicotinamide adenine dinucleotide detection. Journal of the Royal Society Interface 2008; 5: 801-806. https://doi.org/10.1098/rsif.2007.1241
  • [92] Rana S, Jiang J, Korpany KV, Mazur U, Hipps KW. STM investigation of the Y[C6S-Pc]2 and Y[C4O-Pc]2 complex at the solution–solid interface: substrate effects, submolecular resolution, and vacancies. The Journal of Physical Chemistry C 2021; 125: 1421-1431. https://doi. org/10.1021/acs.jpcc.0c10573
  • [93] Ayhan MM, Singh A, Hirel C, Gürek AG, Ahsen V et al. ABAB homoleptic bis (phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability. Journal of the American Chemical Society 2012; 134: 3655-3658. https://doi. org/10.1021/ja211064a
  • [94] Ayhan MM, Singh A, Jeanneau E, Ahsen V, Zyss J et al. ABAB homoleptic bis(phthalocyaninato)lanthanide(III) complexes: original octupolar design leading to giant quadratic hyperpolarizability. Inorganic Chemistry 2014; 53: 4359-4370. https://doi.org/10.1021/ ic4031188
  • [95] Dabak S, Bekaroglu Ö. Synthesis of phthalocyanines crosswise-substituted with two alkylsulfanyl and two amino groups. New Journal of Chemistry 1997; 21: 267-271.
  • [96] Ekren SB, Dumoulin F, Musluoğlu E, Ahsen V, Güngör Ö. A3B and ABAB aminophthalocyanines: building blocks for dimeric and polymeric constructs. Journal of Porphyrins and Phthalocyanines 2019; 23: 1448-1454. https://doi.org/10.1142/S1088424619501499
  • [97] Ayhan MM, Zorlu Y, Gökdemir Ö, Gürek AG, Dumoulin F et al. Optimized synthesis and crystal growth by sublimation of 1,3,3-trichloroisoindolenines, key building blocks for crosswise phthalocyanines. CrystEngComm 2014; 16: 6556-6563. https://doi. org/10.1039/C4CE00189C
  • [98] Alpugan S, Isci U, Albrieux F, Hirel C, Gurek AG et al. Expeditious selective access to functionalized platforms of A7B-type heteroleptic lanthanide double-decker complexes of phthalocyanine. Chemical Communications 2014; 50: 7466-7468. https://doi.org/10.1039/ C4CC02523G
  • [99] Huang C, Wang K, Sun J, Jiang J. Planar binuclear phthalocyanine-containing sandwich-type rare-earth complexes: synthesis, spectroscopy, electrochemistry, and NLO properties. European Journal of Inorganic Chemistry 2014; 1546-1551. https://doi.org/10.1002/ejic.201301485
  • [100] Lu G, Kong X, Sun J, Zhang L, Chen Y et al. Solution-processed single crystal microsheets of a novel dimeric phthalocyanine-involved triple-decker for high-performance ambipolar organic field effect transistors. Chemical Communications 2017; 53: 12754-12757. https:// doi.org/10.1039/C7CC06797F
  • [101] Abdurrahmanoğlu Ş, Özkaya AR, Bulut M, Bekaroğlu Ö. Synthesis, characterization, and electrochemical and electrochromic properties of sandwich dilutetium tetraphthalocyanine. Dalton Transactions 2004; 4022-4029. https://doi.org/10.1039/B412029A
  • [102] Şen P, Dumludağ F, Salih B, Özkaya AR, Bekaroğlu Ö. Synthesis and electrochemical, electrochromic and electrical properties of novel s-triazine bridged trinuclear Zn(II), Cu(II) and Lu(III) and a tris double-decker Lu(III) phthalocyanines. Synthetic Metals 2011; 161: 1245-1254. https://doi.org/10.1016/j.synthmet.2011.04.012
  • [103] Sastre A, del Rey B, Torres T. Synthesis of novel unsymmetrically substituted push-pull phthalocyanines. The Journal of Organic Chemistry 1996; 61: 8591-8597. https://doi.org/10.1021/jo961018o
  • [104] Zhang Y, Ma P, Zhu P, Zhang X, Gao Y et al. 2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyanines with good n-type semiconducting properties. Synthesis, spectroscopic, and electrochemical characteristics. Journal of Materials Chemistry 2011; 21: 6515-6524. https://doi. org/10.1039/C1JM10295H
  • [105] İşci Ü, Dumoulin F, Sorokin AB, Ahsen V. N-bridged dimers of tetrapyrroles complexed by transition metals: syntheses, characterization methods, and uses as oxidation catalysts. Turkish Journal of Chemistry 2014; 38: 923-949. https://doi.org/10.3906/kim-1407-47
  • [106] İşci Ü, Afanasiev P, Millet JMM, Kudrik EV, Ahsen V et al. Preparation and characterization of μ-nitrido diiron phthalocyanines with electron-withdrawing substituents: application for catalytic aromatic oxidation. Dalton Transactions 2009; 7410-7420. https://doi. org/10.1039/B902592H
  • [107] İşci Ü, Faponle AS, Afanasiev P, Albrieux F, Briois V et al. Site-selective formation of an iron(iv)–oxo species at the more electron-rich iron atom of heteroleptic μ-nitrido diiron phthalocyanines. Chemical Science 2015; 6: 5063-5075. https://doi.org/10.1039/C5SC01811K
  • [108] Şahin Z, Meunier-Prest R, Dumoulin F, Kumar A, İsci Ü et al. Tuning of organic heterojunction conductivity by the substituents’ electronic effects in phthalocyanines for ambipolar gas sensors. Sensors and Actuators B: Chemical 2021; 332: 129505 https://doi.org/10.1016/j. snb.2021.129505
  • [109] Fu L, Li H, Fang Y, Guan Z, Wei Z et al. Cascading electron transfer and photophysics in a donor-π-acceptor graphene nanoconjugate. Nano Research 2023; 16: 5909-5918. https://doi.org/10.1007/s12274-022-5167-8
APA TOPKAYA TASKIRAN D, ŞAHİN z, İşci Ü, Dumoulin F (2023). Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. , 814 - 836. 10.55730/1300-0527.3582
Chicago TOPKAYA TASKIRAN DERYA,ŞAHİN zeynel,İşci Ümit,Dumoulin Fabienne Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. (2023): 814 - 836. 10.55730/1300-0527.3582
MLA TOPKAYA TASKIRAN DERYA,ŞAHİN zeynel,İşci Ümit,Dumoulin Fabienne Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. , 2023, ss.814 - 836. 10.55730/1300-0527.3582
AMA TOPKAYA TASKIRAN D,ŞAHİN z,İşci Ü,Dumoulin F Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. . 2023; 814 - 836. 10.55730/1300-0527.3582
Vancouver TOPKAYA TASKIRAN D,ŞAHİN z,İşci Ü,Dumoulin F Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. . 2023; 814 - 836. 10.55730/1300-0527.3582
IEEE TOPKAYA TASKIRAN D,ŞAHİN z,İşci Ü,Dumoulin F "Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block." , ss.814 - 836, 2023. 10.55730/1300-0527.3582
ISNAD TOPKAYA TASKIRAN, DERYA vd. "Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block". (2023), 814-836. https://doi.org/10.55730/1300-0527.3582
APA TOPKAYA TASKIRAN D, ŞAHİN z, İşci Ü, Dumoulin F (2023). Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. Turkish Journal of Chemistry, 47(5), 814 - 836. 10.55730/1300-0527.3582
Chicago TOPKAYA TASKIRAN DERYA,ŞAHİN zeynel,İşci Ümit,Dumoulin Fabienne Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. Turkish Journal of Chemistry 47, no.5 (2023): 814 - 836. 10.55730/1300-0527.3582
MLA TOPKAYA TASKIRAN DERYA,ŞAHİN zeynel,İşci Ümit,Dumoulin Fabienne Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. Turkish Journal of Chemistry, vol.47, no.5, 2023, ss.814 - 836. 10.55730/1300-0527.3582
AMA TOPKAYA TASKIRAN D,ŞAHİN z,İşci Ü,Dumoulin F Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. Turkish Journal of Chemistry. 2023; 47(5): 814 - 836. 10.55730/1300-0527.3582
Vancouver TOPKAYA TASKIRAN D,ŞAHİN z,İşci Ü,Dumoulin F Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block. Turkish Journal of Chemistry. 2023; 47(5): 814 - 836. 10.55730/1300-0527.3582
IEEE TOPKAYA TASKIRAN D,ŞAHİN z,İşci Ü,Dumoulin F "Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block." Turkish Journal of Chemistry, 47, ss.814 - 836, 2023. 10.55730/1300-0527.3582
ISNAD TOPKAYA TASKIRAN, DERYA vd. "Phthalocyanines prepared from 4,5-dihexylthiophthalonitrile, a popular building block". Turkish Journal of Chemistry 47/5 (2023), 814-836. https://doi.org/10.55730/1300-0527.3582