Yıl: 2023 Cilt: 22 Sayı: 2 Sayfa Aralığı: 951 - 961 Metin Dili: Türkçe DOI: 10.17780/ksujes.1328845 İndeks Tarihi: 14-12-2023

KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI

Öz:
Kil zeminler, suyla karşılaştıklarında hacimsel stabilitelerini kaybettikleri için problemli zeminler olarak bilinmektedir. Ayrıca donma-çözülme olayı bu zeminlerin mühendislik özelliklerini olumsuz yönde etkileyen önemli bir parametredir. Kil zeminlerin bu gibi durumlara karşı özelliklerini iyileştirmek amacıyla birçok iyileştirme yöntemi bulunmaktadır. Katkı malzemeleri ile zemin iyileştirme yaygın olarak kullanılan yöntemlerden birisidir. Katkılar arasında geleneksel olarak kullanılan çimento, kireç gibi kimyasal malzemeler yer alırken uçucu kül gibi atık malzemeler de kullanılmaktadır. Son yıllarda bu malzemelerin çevreye verdikleri zarar göz önüne alınarak araştırmacılar tarafından karbon salınımına neden olmayan malzeme arayışına gidilmiştir. Bu bağlamda çevre dostu, yeşil polimerler olarak tabir edilen biyopolimerler ile zemin iyileştirmesi yaygın olarak çalışılmaya başlanmıştır. Bunlara ilaveten lifler de zemin iyileştirmesinde alternatif olarak kullanılan malzemeler arasında yer almaktadır. Literatürde biyopolimer ve liflerin bir arada kullanılması ile zeminlerin iyileştirilmesi ise yeni bir konudur. Bu çalışma kapsamında bir biyopolimer olan keçiboynuzu gam ile sentetik bir lif olan polyester iplik farklı yüzdelerde kullanılarak kil bir zeminin mukavemet ve donma çözülme sonrası mukavemet davranışı araştırılmıştır. Çalışma sonucunda, biyopolimer ve lifin bir arada kullanılmasının kil zeminin serbest basınç ve donma çözülme sonrası mukavemetini yalnız lif ve yalnız biyopolimer içeren kile göre daha fazla iyileştirdiği görülmüştür.
Anahtar Kelime: Kil lif biyopolimer donma-çözülme serbest basınç mukavemeti

Hayvan Yetiştiriciliğinden Kaynaklanan Kokulu Gazların Arıtımında Biyofiltrelerin Etkinliklerinin İncelenmesi

Öz:
Çalışmada hayvan çiftliklerinden kaynaklanan ve amonyak içeren kokulu atık gazların biyofiltrelerlearıtılması araştırılmıştır. Biyofiltreler, düşük enerji gereksinimleri ve ilk kurulum maliyetinin düşüklüğünedeniyle koku kontrolünde tercih edilmektedir. Bu nedenle, çalışmada hayvan barınaklarının aralıklıhavalandırma uygulamasının simüle edilmesi için kesikli düzenle kurulan laboratuvar ölçekli reaktörlerkullanılmıştır. Seri bağlı iki adet reaktöre kirletici olarak, konsantre amonyum hidroksit çözeltisinden havageçirmek suretiyle ile sıyrılarak elde edilen amonyak/hava karışımları beslenmiştir. Filtrelerde dolgumaddesi olarak evsel katı atıktan üretilmiş kompost ve odun talaşı karışımı kullanılmıştır. Farklı yüklemeoranlarına karşılık amonyağın biyofiltrelerde aerobik-biyolojik olarak oksidasyon verimi ve bu verimietkileyen faktörler incelenmiştir. Aklimasyon dönemi dahil 130 günlük süre içinde 1,32-27 g NH3/m3.saataralığında 8 farklı değerde yükleme yapılmış, ortalama amonyak giderim verimi % 97,2±1,8 olarakbulunmuştur.
Anahtar Kelime:

Investigation of the Treatment Efficiency of Biofilters In Terms of Odorous Gases Originated from Animal Breeding

Öz:
In the study, treatment of odorous waste gases emited from the cattle and sheep breeding facilities and poultry farms which containing ammonia were investigated by means of biofilters. Biofilters are preferred for odor control due to their low energy requirement and capital cost. For this purpose, bench scale batch reactors, were used to simulate the intermittent ventilation of animal barns. Ammonia/air mixtures used as pollution source were obtained by stripping the concentrated ammonium hydroxide via air and fed to two serially connected biofilter modules. Compost produced from domestic solid waste and sawdust mixture was used as a packing material in the filters. Factors affecting aerobic-biologic oxidation of ammonia in biofilters were investigated for different loading rates. During the 130 days which including the acclimation period, 8 different loads were loaded in the range of 1.32-27 g NH3/m3.h and the average ammonia removal rate was found as 97.2% ± 1.8.
Anahtar Kelime:

INVESTIGATION THE COMBINED EFFECT OF BIOPOLYMER AND FIBER ADDITIVES ON STRENGTH AND POST FREEZING-THAWING STRENGTH OF CLAY

Öz:
Clay soils are known as problematic soils because they lose volumetric stability when they encounter water. Additionally, freeze-thaw phenomenon is an important parameter adversely affects the properties of soils. There are many improvement methods to improve the properties of clay soils to prevent such conditions. Soil improvement with additives is one of the commonly used methods. Among the additives, traditionally chemical materials (i.e. cement, lime) are used, while waste materials (i.e. fly ash) are also used. In recent years, considering environmental damage of these materials, researchers have been searched for materials that don’t cause carbon emissions. In this context, improvement with biopolymers, that called environmentally friendly, green polymers started to be studied. In addition to these, fibers are also used in soil improvement. In literature, the improvement of soils by biopolymers and fibers combined is a new topic. In this study, locust bean gum, a biopolymer, and polyester fiber, a synthetic fiber, were used in different percentages to investigate the strength and post-freeze-thaw strength of clay soil. As a result of the study, it was observed that combination of biopolymer and fiber improved the unconfined compressive strength and post freeze-thaw strength of clay soil more than fiber and biopolymer.
Anahtar Kelime: Clay fiber biopolymer freezing-thawing unconfined compression strength

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • I. Showqi, F. A Lone, M. Ashraf, M. A. Mehmood, and A. Rashid, “Biofilters in Mitigation of Odour Pollution - A Review,” Nature Environment and Pollution Technology, vol. 15, pp.1177-1185, 2016.
  • V. Blanes-Vidal, J. Baelum, E. S. Nadimi, P. Lofstrom, L. P. Christensen, “Chronic exposure to odorous chemicals in residential areas and effects on human psychosocial health, Dose-response relationships,” Science of The Total Environment, vol. 490, pp.545-554, 2014.
  • Akbulut, R. K., & Zaimoğlu, A. Ş. (2019). Effect of aspect ratio on the freezing thawing of a CH clay. Selçuk Üniversitesi Mühendislik Bilim ve Teknik Dergisi, 7, 66-74. https://doi.org/10.15317/Scitech.2019.182
  • Ö. Uyar “Biyofiltrelerle Amonyak Emisyonlarinin Kontrolü,” Yüksek Lisans Tezi, Istanbul Teknik Üniversitesi, 2007.
  • Ayeldeen, M. K., Negm, A. M., El Sawwaf, M. A. (2016). Evaluating the physical characteristics of biopolymer/soil mixtures. Arabian Journal of Geosciences, 9: 371. https://doi.org/10.1007/s12517-016-2366-1
  • K. Alp, Ö. Uyar, A. Hanedar, E. Avşar, “Amonyak İçeren Atıkgazların Biyofiltrelerde Arıtılması,” İ.T.Ü. 12. Endüstriyel Kirlenme Kontrolü Sempozyumu, s.103-112, 2010.
  • Ayhan, A. (2011). Biyopolimer Katkıları İle Zeminlerin Mühendislik Özelliklerinin İyileştirilmesi. Yüksek Lisans Tezi. Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, Manisa.
  • G. K. Kafle, L. Chen, H. Neibling, B. B. He, “Field evaluation of wood bark-based downflow biofilters for mitigation of odor, ammonia, and hydrogen sulfide emissions from confined swine nursery barns,” Journal of Environmental Management, vol. 147, pp. 164-174, 2015.
  • ASTM D 2166-00, 2000. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM West Conshohocken, PA.
  • P. Baltrenasa, A. Miseviciusa, K. Macaitisa, R. Tekorieneb, “Experimental research of odours arising during the process of biofiltration,” Energy Procedia, vol. 72, pp 64–70, 2015.
  • Chang, I., Im, J., & Cho, G.C. (2016) Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
  • M. Appl, “Ammonia:Principles and industrial practice,”New Jersey: Wiley- VCH, 1999.
  • Chang, I., Im, J., Prasidhi, A. K., & Cho, G.C. (2015b) Effects of xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  • W. M. Grant, C. C. Thomas, “Ammonia. In: Toxicology of the eye. 2nd edition,” Illionis: Springfield, 1974.
  • Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation Geotechnics, 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
  • S. S. Schiffman, B. W. Auvermann, R. W. Bottcher, “Health Effects of Aerial Emissions from animal production and waste management systems,”. Technical Note, White Paper Summaries, pp. 1-3, 2001.
  • Chang, I., Prasidhi, A. K., Im, J., & Cho, G. C. (2015a). Soil strengthening using thermo-gelation biopolymers. Construction and Building Materials, 77, 430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
  • J. Pearson, G. R. Stewart, “The deposition of atmospheric ammonia and its effects on plants,” New Phytologist, vol. 125, pp. 283– 305, 1993.
  • Chen, C., Wei, K., Gu, J., Huang, X., Dai, X., & Liu, Q. (2022). Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil. Polymers, 14, 787. https://doi.org/10.3390/polym14040787
  • T. Kurvits, T. Marta, “Agricultural NH3, and NO emissions in Canada. Environmental Pollution,” vol. 102, pp. 187-194, 1998.
  • Cheng, Z., & Geng, X. (2021). Soil consistency and interparticle characteristics of various biopolymer types stabilization of clay. Geomechanics and Engineering, 27(2), 103-113. https://doi.org/10.12989/gae.2021.27.2.103
  • C. M. C. Peet-Schwering, A. J. A. Aarnink, H. B. Rom, J. Y. Dourmad, “Ammonia emissions from pig houses in the Netherlands, Denmark and France,”. Livestock Production Science, vol. 58, no.1- 3, pp. 265-269, 1999.
  • Çelik, S., Ghalehjough, B. K., Majedi, P., & Akbulut, S. (2017). Effect of randomly fiber reinforcement on shear failure surface of soil, behind flexible retaining walls at different conditions. Indian Journal of Geo-Marine Sciences, 46(10), 2097-2104.
  • E. Dumont, L. Hamon, S. Lagadec, P. Landrain, B. Landrain, Y. Andrès, “NH3 biofiltration of piggery air,” Journal of Environmental Management, vol. 140, pp. 26-32, 2014.
  • Çelik, S. (2017). An Experimental Investigation of Utilizing Waste Red Mud in Soil Grouting. KSCE Journal Of Civil Engineering, 21(4), 1191-1200. https://doi.org/10.1007/s12205-016-0774-0
  • K. Louhelainen, J. Kangas, A. Veijenan, P. Viilos, “Effect of in situ composting on reducing offensive odors and volatile organic compounds in Swineries,” AIHAJ, vol. 62, pp. 159-167, 2001.
  • Dahale, P. P., Nagarnaik, P. B., & Gajbhiye, A. Y. (2017). Engineering behavior of remolded expansive soil with lime and flyash. Materials Today: Proceedings, 4(2017), 10581–10585. https://doi.org/10.1016/j.matpr.2017.06.423
  • S. B. Shah, T. J. Basden, D. K. Bhumbla, “Bench-scale biofilter for removing ammonia from poultry house exhaust,” Journal of Environmental Science and Health, Part B-Pesticides, Food Contaminants and Agricultural Wastes, vol. B38, pp. 89-101, 2003.
  • Dey, P., Maiti, S., & Sa, B. (2012). Locust bean gum and its application in pharmacy and biotechnology: An overview. International Journal of Current Pharmaceutical Research, 4(1), 7-11.
  • A. Armeen, “Biofiltration of odour control in livestock facilities,” Ph.D Thesis, University of Alberta, 2006.
  • Ekmen, A. B., Algin, H. M., & Özen, M. (2020). Strength and stiffness optimisation of fly ash-admixed DCM columns constructed in clayey silty sand. Transportation Geotechnics, 24, 100364. doi.org/10.1016/j.trgeo.2020.100364
  • Y. X. Chen, J. Yin, K. X. Wang, S. Fang, “Effects of periods of nonuse and fluctating ammonia concentration on biofilter performance,” Journal of Environmental science and helth part A-Toxic/Hazardous Substances and Environmental Engineering, vol. A39, pp. 2447-2463, 2004.
  • Fatehi, H., Ong, D. E. L., Yu, J., & Chang, I. (2021). Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosciences, 11, 291. https://doi.org/10.3390/geosciences11070291
  • E. Smet, H. Van Langenhove, K. Maes, “Abatement of high concentrated ammonia loaded waste gases in compost biofilters,” Water, Air and Soil Pollution, vol. 119, pp. 177-190, 2000.
  • Ghazavi, M., & Roustaie, M. (2010). The influenze of freeze thaw cycles on the unconfined compressive strength of fiber reinforced clay. Cold Regions Science and Technology, 61, 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005
  • N. J. Kim, M. Hirai, M. Shoda, “Comparison of organic and inorganic packing materials in the removal of ammonia gas in biofilters,” Journal of Hazardous Materials, vol. B72, pp.77-90, 2000.
  • Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Akram, O., Fang, C., Ghani, M. U., Ijaz, Z., Noshin, S., & Madni, M. F. (2023). Geotechnical behavior of high-plastic clays treated with biopolymer: macro–micro-study. Environmental Earth Sciences, 82, 91. https://doi.org/10.1007/s12665-023-10760-2
  • E. Pagans, X. Font, A. Sanchez, “Biofiltration for ammonia removal from composting exhaust gases,” Chemical Engineering Journal, vol. 113, pp. 105-110, 2005.
  • Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045
  • K. A. Rabbania, W. Charlesa, A. Kayaalp, R. Cord-Ruwischa, G. Hoa, “Pilot-scale biofilter for the simultaneous removal of hydrogen sulphide and ammonia at a wastewater treatment plant,” Biochemical Engineering Journal, vol. 107, pp. 1–10, 2016.
  • Hohmann-Porebska, M. (2002). Microfabric effects in frozen clays in relation to geotechnical parameters. Applied Clay Science, 21(2002), 77 – 87. https://doi.org/10.1016/S0169-1317(01)00094-1
  • H. L. Bohn, “Control of VOC emissions from waste management facilities, Comments, J. Environ. Eng., vol. 116, pp. 1002-1004, 1990.
  • Jamshidi, R., Towhata, I., Ghiassian, H., & Tabarsa, R. (2010). Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dynamics and Earthquake Engineering, 30(6), 438–446. https://doi.org/10.1016/j.soildyn.2009.12.017
  • H. L. Bohn, “Consider biofiltration for decontaminating gases,” Chem. Eng. Prog. , vol. 88, pp.34-40, 1992.
  • Jang, J., (2020). A review of the application of biopolymers on geotechnical engineering and the strengthening mechanisms between typical biopolymers and soils. Hindawi Advances in Materials Science and Engineering, 2020, Article ID: 1465709, 1-17. https://doi.org/10.1155/2020/1465709
  • R. F. Vieira, D. Lopes, I. R. Baptista, S. A. Figueiredo, V. F. Domingues, J. Vaz, H. Varela, R. F. Jorge, O. M. Freitas, and C. Delerue-Matos, “Biofiltration using natural materials from Portuguese woods for odour removal in a municipal waste management plant,” Sustainable Development, vol. 2, pp. 717-727, 2015.
  • Kalkan, E., & Akbulut, S. (2004). The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners. Engineering Geology, 73, 145-156. https://doi.org/10.1016/j.enggeo.2004.01.001
  • J. S. Devinny, M. A. Deshusses, T. S. Webster, “Biofiltration for air pollution control,” Florida: CRC Lewis Publishers, 1999.
  • Khatami, H. R., & O’Kelly, B. C. (2013). Improving mechanical properties of sand using biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 139(8),1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.000086
  • R. E. Nicolai, “Biofiltration of livestock facility exhaust air,” Ph.D Thesis, University of Minnesota, 2002.
  • Kurt Albayrak, Z. N., & Altun, B. (2021). Strength properties of biopolymer treated clay/marble powder mixtures. Challenge Journal Of Concrete Research Letters, 12(4), 131-137, https://doi.org/10.20528/cjcrl.2021.04.003
  • N. Furusawa, I. Togashi, M. Hirai, M. Shoda, H. Kubota, “Removal of hydrogen sulfide by a biofilter with fibrous peat,” Journal of Fermantation Technology, vol. 62, pp. 589-594, 1984.
  • Kurt Albayrak, Z. N., & Gencer, G. (2021). The usability of clay/pumice mixtures modified with biopolymer as an impermeable liner. KSCE Journal of Civil Engineering, 25(1), 28-36, https://doi.org/10.1007/s12205-020-1053-7
  • Y. X. Chen, J. Yin, K. X. Wang, “Long term operation of biofilters for biological removal of ammonia,” Chemosphere, vol. 58, pp. 1023-1030, 2005.
  • Latifi, N., Horpibulsuk, S., Meehan, C. L., Majid, M. Z. A., & Rashid, A. S. A. (2016). Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat. Environmental Earth Sciences. https://doi.org/10.1007/s12665- 016- 5643-0
  • D. A. Eaton, L. S. Clesceri, E. W. Rice, A. E. Greenberg, “Standard Methods for the examination of water and wastewater 21st Ed.,” Missouri: American Public Ass.,2005.
  • Liu, C., Lv, Y., Yu, X., & Wu, X. (2020). Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil. Geotextiles and Geomembranes, 48, 581-590. https://doi.org/10.1016/j.geotexmem.2020.03.004
  • Ma, Q., Yang, Y., Xiao, H., & Xing, W. (2018). Studying shear performance of flax fiber-reinforced clay by triaxial test. Advances in Civil Engineering, 2018, 1290572. https://doi.org/10.1155/2018/1290572
  • Rezaei Fard, A., Moradi, G., Karimi Ghalehjough, B., & Abbasnejad, A. (2020). Freezing-thawing resistance evaluation of sandy soil, improved by polyvinyl acetate and ethylene glycol monobutyl ether mixture. Geomechanics and Engineering, 23(2), 179-187. https://doi.org/10.12989/gae.2020.23.2.179
  • Singh S. P., & Das, R. (2020). Geo-engineering properties of expansive soil treated with xanthan gum biopolymer, Geomechanics and Geoengineering, 15(2), 107-122, https://doi.org/10.1080/17486025.2019.1632495
  • Smitha, S., & Sachan, A. (2016). Use of agar biopolymer to improve the shear strength behavior of Sabarmati sand. International Journal of Geotechnical Engineering, 10(4),387-400. https://doi.org/10.1080/19386362.2016.1152674
  • Wiszniewski, M., & Cabalar, A. F. (2014). Hydraulic conductivity of a biopolymer treated sand. New Frontiers in Geotechnical Engineering, 243, 19-27. https://doi.org/10.1061/9780784413456.003
  • Zaimoglu, A. (2010). Freezing–thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology, 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001
APA GÜVEN B, Avşar E, GÜNEK Ş, UYAR Ö, KURT ALBAYRAK Z, ALP K, HANEDAR A (2023). KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. , 951 - 961. 10.17780/ksujes.1328845
Chicago GÜVEN BÜŞRA,Avşar Edip,GÜNEK ŞİFA,UYAR Özgür,KURT ALBAYRAK ZEYNEP NESE,ALP Kadir,HANEDAR ASUDE KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. (2023): 951 - 961. 10.17780/ksujes.1328845
MLA GÜVEN BÜŞRA,Avşar Edip,GÜNEK ŞİFA,UYAR Özgür,KURT ALBAYRAK ZEYNEP NESE,ALP Kadir,HANEDAR ASUDE KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. , 2023, ss.951 - 961. 10.17780/ksujes.1328845
AMA GÜVEN B,Avşar E,GÜNEK Ş,UYAR Ö,KURT ALBAYRAK Z,ALP K,HANEDAR A KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. . 2023; 951 - 961. 10.17780/ksujes.1328845
Vancouver GÜVEN B,Avşar E,GÜNEK Ş,UYAR Ö,KURT ALBAYRAK Z,ALP K,HANEDAR A KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. . 2023; 951 - 961. 10.17780/ksujes.1328845
IEEE GÜVEN B,Avşar E,GÜNEK Ş,UYAR Ö,KURT ALBAYRAK Z,ALP K,HANEDAR A "KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI." , ss.951 - 961, 2023. 10.17780/ksujes.1328845
ISNAD GÜVEN, BÜŞRA vd. "KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI". (2023), 951-961. https://doi.org/10.17780/ksujes.1328845
APA GÜVEN B, Avşar E, GÜNEK Ş, UYAR Ö, KURT ALBAYRAK Z, ALP K, HANEDAR A (2023). KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. KSÜ Mühendislik Bilimleri Dergisi, 22(2), 951 - 961. 10.17780/ksujes.1328845
Chicago GÜVEN BÜŞRA,Avşar Edip,GÜNEK ŞİFA,UYAR Özgür,KURT ALBAYRAK ZEYNEP NESE,ALP Kadir,HANEDAR ASUDE KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. KSÜ Mühendislik Bilimleri Dergisi 22, no.2 (2023): 951 - 961. 10.17780/ksujes.1328845
MLA GÜVEN BÜŞRA,Avşar Edip,GÜNEK ŞİFA,UYAR Özgür,KURT ALBAYRAK ZEYNEP NESE,ALP Kadir,HANEDAR ASUDE KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. KSÜ Mühendislik Bilimleri Dergisi, vol.22, no.2, 2023, ss.951 - 961. 10.17780/ksujes.1328845
AMA GÜVEN B,Avşar E,GÜNEK Ş,UYAR Ö,KURT ALBAYRAK Z,ALP K,HANEDAR A KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. KSÜ Mühendislik Bilimleri Dergisi. 2023; 22(2): 951 - 961. 10.17780/ksujes.1328845
Vancouver GÜVEN B,Avşar E,GÜNEK Ş,UYAR Ö,KURT ALBAYRAK Z,ALP K,HANEDAR A KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. KSÜ Mühendislik Bilimleri Dergisi. 2023; 22(2): 951 - 961. 10.17780/ksujes.1328845
IEEE GÜVEN B,Avşar E,GÜNEK Ş,UYAR Ö,KURT ALBAYRAK Z,ALP K,HANEDAR A "KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI." KSÜ Mühendislik Bilimleri Dergisi, 22, ss.951 - 961, 2023. 10.17780/ksujes.1328845
ISNAD GÜVEN, BÜŞRA vd. "KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI". KSÜ Mühendislik Bilimleri Dergisi 22/2 (2023), 951-961. https://doi.org/10.17780/ksujes.1328845