Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi

29 0

Proje Grubu: KBAG Sayfa Sayısı: 89 Proje No: 218Z125 Proje Bitiş Tarihi: 01.02.2023 Metin Dili: Türkçe DOI: 218Z125 İndeks Tarihi: 19-03-2024

Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi

Öz:
Kloramfenikol geniş spektrumlu bir antibiyotik olup hem gram pozitif hem de gram negatif bakterilere karşı etkilidir. Günümüzde sentetik olarak üretilebilmesi, ucuz maliyeti ve geniş spektrum etki mekanizmasına sahip olması nedeniyle insan ve hayvan hastalıklarında sıklıkla kullanılmasına rağmen, gri bebek sendromu, lösemi, aplastik anemi ve kemik iliği baskılanması gibi birçok hastalığa sebep olduğu bilinmektedir. Bu nedenle ülkemizde 2017 yılında yürürlüğü giren yönetmeliklerle kloramfenikol yasaklı madde olarak belirlenmiştir. Aflatoksin M1 Aspergillus cinsi küfler tarafından üretilen, özelikle süt ve süt ürünlerinde bulunan, 4-hidroksi aflatoksin B1`in toksik türevidir. Karsinojen olarak değerlendirilen bu aflatoksin çeşidi pastörizasyon gibi ısıl işlemlere karşı stabilite gösterdiğinden süt ve süt ürünlerinde risk oluşturmaktadır ve bu nedenle 2011 yılında yayınlanan bulaşan yönetmeliğiyle çiğ süt, ısıl işlem görmüş süt ve süt bazlı ürünlerin üretiminde kullanılan sütlerde aflatoksin M1`in maksimum limiti 0.050 ?g/kg olarak belirtilmiştir. Günümüzde kloramfenikol ve aflatoksin M1 için kromatografik ve spektroskobik tayin yöntemleri bulunmasına karşılık ön ekstraksiyon ve saflaştırma basamaklarına ihtiyaç duymaları, maliyetli ve zaman alıcı olmaları nedeniyle farklı yöntemlerin geliştirilmesine ihtiyaç duyulmaktadır. Bu projede, kloramfenikol ve aflatoksin M1`i aynı anda algılayabilecek ve aflatoksin M1 miktar tayini yapabilecek, aptamer bağlayıcılı DNA hidrojel tabanlı tek bir algılama platformunun geliştirilmesi amaçlandı. Bu amaçla, kloramfenikol aptameri ve ona kısmen eşlenik tasarlanan DNA iplik 1 ile DNA hidrojeli sentezlendi ve karakterizasyonu gerçekleştirildi. Sentez esnasında aflatoksin M1 aptameri ve ona kısmen eşlenik tasarlanan DNA iplik 2 de polimer yapıya entegre edildi. Her iki ayrı hedef için tasarlanan tespit yöntemine ait optimizasyon çalışmaları yapılarak en uygun sentez, entegrasyon ve tespit koşulları belirlendi. Algılama platformuna ait performans parametreleri olan tespit (LOD) ve tayin limiti (LOQ) kloramfenikol için 0.10 nM LOD, aflatoksin M1 için ise 1.68 nM LOD ve 5.16 nM LOQ olarak belirlendi. Sentezlenen DNA hidrojelin hedef moleküllere karşı verdiği cevap hem solüsyon ortamında hem de gerçek örnek olarak seçilen süt örneğinde denendi ve iki hedefe karşı tasarlanan algılama platformunun çalışır olduğu gösterildi. Sonuç olarak; proje başarılı bir şekilde tamamlandı.
Anahtar Kelime: Aptamer DNA Hidrojel Kloramfenikol Aflatoksin M1 Dual Aptasensör

Development of DNA hydrogel-based dual aptasensor platform specific for chloramphenicol and aflatoxin M1 food contaminants

Öz:
Chloramphenicol is a broad-spectrum antibiotic and it is effective against both gram-positive and gram-negative bacteria. Although it has been frequently used in human and animal diseases due to its synthetic production, cheap cost and broad spectrum mechanism of action, it may cause many diseases such as gray baby syndrome, leukemia, aplastic anemia and bone marrow suppression. For this reason, chloramphenicol has been determined as a prohibited substance in our country with the regulation adopted in 2017. Aflatoxin M1 is a toxic metabolite of 4-hydroxy aflatoxin B1,produced by molds of the genus Aspergillus and found in milk and dairy products. This type of aflatoxin, which is considered a carcinogen, poses a risk in milk and dairy products since it shows stability against heat treatments such as pasteurization. Therefore, with the contaminant regulation published in 2011, the maximum limit of aflatoxin M1 in pasteurized milk and its product is specified as 0.050 ?g/kg. Although there have been certain chromatographic and spectrosphotometric determination methods for chloramphenicol and aflatoxin M1, different detection methods are needed since these methods require pre-extraction and purification steps, are costly and time consuming. In this project, it was aimed to develop a single detection platform based on aptamer-functionalized DNA hydrogel that can simultaneously detect chloramphenicol and aflatoxin M1 and also quantify aflatoxin M1. For this purpose, DNA hydrogel was synthesized with the use of chloramphenicol aptamer and partially conjugated DNA strand 1 and it was characterized. During the synthesis, the aflatoxin M1 aptamer and the partially conjugated DNA strand 2 were integrated into the polymer structure. Optimization studies were carried out for the detection method designed for both targets, and the most suitable synthesis, integration and detection conditions were determined. The performance parameters of the detection platform, limit of detection (LOD) and limit of quantification (LOQ) were determined as 0.10 nM LOD for chloramphenicol, 1.68 nM LOD and 5.16 nM LOQ for aflatoxin M1, respectively. The response of the synthesized DNA hydrogel to the target molecules was tested both in the solution medium and in the milk sample selected as the real sample, and it was shown that the detection platform designed against the two targets works properly. In conclusion; the project was successfully completed.
Anahtar Kelime: Aptamer DNA Hidrojel Kloramfenikol Aflatoksin M1 Dual Aptasensör

Erişim Türü: Bibliyografik
  • Amaya-González, S., de-Los-Santos-Álvarez, N., Miranda-Ordieres, A.J., Lobo-Castañón, M.J. 2015. ―Sensitive gluten determination in gluten-free foods by an electrochemical aptamer-based assay‖, Anal Bioanal Chem., 407, 20, 6021-9.
  • AOAC Official Method 986.16 Aflatoxins M1 and M2 in fluid milk, liquid chromatographic method. Natural Toxins, Chapter-49, Official Methods of Analysis of AOAC International, AOAC International, Gaithersburg, Maryland 20877–2417, USA, 2000, 40-42.
  • Bai, W., Spivak, D. A. 2014. ―A Double Imprinted Diffraction Grating Sensor Based on a Virus Responsive Super Aptamer Hydrogel Derived from an Impure Extract‖, Angew. Chem., Int. Ed., 53, 2095-2098.
  • Balaoing, L. R., Post, A. D., Lin, A. Y., Tseng, H., Moake, J. L., Grande-Allen K. J. 2015. ―Laminin Peptide-Immobilized Hydrogels Modulate Valve Endothelial Cell Hemostatic Regulation‖, PLoS One, 10, e0130749.
  • Bakirci, I. 2001. ―A study on the occurrence of aflatoxin M1 in milk and milk products produced in Van province of Turkey‖, Food Control, 12, 47-51.
  • Bayrac, A.T., Sefah, K., Parekh, P., Bayrac, C., Gulbakan, B., Oktem, H.A., Tan, W. 2011. ―In Vitro Selection of DNA Aptamers to Glioblastoma Multiforme‖, ACS Chem. Neurosci., 2, 3, 175-181.
  • Bayraç, C., Eyidoğan, F., Avni Öktem, H. 2017. ―DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis‖, Biosensors and Bioelectronics, 98, 22-28.
  • Bognanno, M. , Fauci, L.L., Ritieni, A., Tafuri, A. , Lorenzo, A.D., Micari, P., Renzo L.D., Ciappellano S., Sarullo V., Galvano F. 2006. ―Survey of the occurrence of Aflatoxin M1 in ovine milk by HPLC and its confirmation by MS‖, Mol. Nutr. Food Res., 50, 300-305.
  • Bruno, J.G., Carrillo, M.P., Philips, T. 2008. ―In vitro antibacterial effects of antilipopolysaccharide DNA aptamer-C1qrs complexes‖, Folia Microbiol (Praha), 53, 4, 295- 302.
  • Cavaliere, C., Foglia, P., Pastorini, E., Samperi, R., Laganà A. 2006. ―Liquid chromatography/ tandem mass spectrometric confirmatory method for determining aflatoxin M1 in cow milk: comparison between electrospray and atmospheric pressure photoionization sources‖, J. Chromatogr. A, 1101, 69-78.
  • Castillo, G., Spinella, K., Poturnayová, A., Šnejdárková, M., Mosiello, L., Hianik, T. 2015. ―Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform‖, Food Control, 52, 9-18.
  • Chen, X., Bai, X., Li, H.,, Zhang, B. 2015. ―Aptamer-based microcantilever array biosensor for detection of fumonisin B-1‖, RSC Advances, 45.
  • Commission Regulation (EC) No 1881/2006. 2006. ―setting maximum levels for certain contaminants in foodstuffs‖, Off. J. Eur. Union, 364, 5-24.
  • Dasgupta, A. 2012. ―Chapter 3 - Advances in antibiotic measurement‖, Advances in Clinical Chemistry, Editör:. Makowski, G.S. 56, 75-104, Elsevier.
  • Dinçkaya, E., Kınık, Ö., Sezgintürk, M.K., Altuğ, Ç., Akkoca, A. 2011. ―Development of an impedimetric aflatoxin M1 biosensor based on a DNA probe and gold nanoparticles‖, Biosensors and Bioelectronics, 29, 9, 3806-3811.
  • Dong, Z., Huang, G., Xu, S., Deng, C., Zhu, J, Chen, S., Yang, X. and Zhao, S. 2009. ―Real- time and label-free detection of chloramphenicol residues with specific molecular interaction‖, J. Microsc., 234, 255-261.
  • Dumont, V., Huet, A. C., Traynor, I., Elliot, C. and Delahaut, P. 2006. ―A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol, florfenicol, florfenicol amine and chloramphenicol residues in shrimps‖, Anal. Chim. Acta., 567, 2,179- 183.
  • Ellington, A.D., Szostak, J.W. 1990. ―In vitro selection of RNA molecules that bind specific ligands‖, Nature, 346, 818-822.
  • Famulok, M. 1994. ―Molecular recognition of amino acids by RNA aptamers: an L citrulline RNA motif and its evolution into an L arginine binder‖, Journal of the American Chemical Society, 116, 1698-1706.
  • Guo, Y., Wang, X., Sun, X. 2015. ―A label-free Electrochemical Aptasensor Based on Electrodeposited Gold Nanoparticles and Methylene Blue for Tetracycline Detection‖, Int. J. Electrochem. Sci., 10, 3668-3679.
  • Hamid, A.S., Tesfamariam, I.G., Zhang, Y., Zhang, Z.G. 2013. ―Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention‖, Oncol. Lett., 5, 1087-1092.
  • Holt, D., Harvey, D., Hurley, R. 1993. ―Chloramphenicol toxicity‖, Adverse Drug React. Toxicol. Rev., 12, 83-95.
  • Holtz, J. H., Asher, S. A. 1997. ―Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials‖, Nature, 389, 829-832.
  • Ikeda, M., Tanida, T., Yoshii, T., Kurotani, K., Onogi, S., Urayama, K., Hamachi I. 2014. ―Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids‖, Nat. Chem., 6, 511-518.
  • Iqbal, A., Labib, M., Muharemagic, D., Sattar, S., Dixon, B.R., Berezovski, M.V. 2015. ―Detection of Cryptosporidium parvum Oocysts on Fresh Produce Using DNA Aptamers‖, PLoS One, 10, 9, e0137455.
  • Istamboulié, G., Paniel, N., Zara, L., Reguillo Granados, L., Barthelmebs, L., Noguer, T. 2016. ―Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk‖, Talanta, 146, 464-9.
  • Jiang, H., Pan, V., Vivek, S., Weeks, E.R., Ke, Y. 2016. ―Programmable DNA HydrogelsAssembledfromMultidomain DNA Strands‖, ChemBioChem, 17, 1156 -1162.
  • Kang, H., Trondoli, A.C., Zhu, G., Chen, Y., Chang, Y.J., Liu, H., Huang, Y.F., Zhang, X., Tan, W. 2011. ―Near-infraredlight-responsivecore-shellnanogelsfortargeteddrugdelivery‖, AcsNano., 5, 5094-5099.
  • Karaseva, N. A., Ermolaeva, T. N. 2012. ―A piezoelectric immunosensor for chloramphenicol detection in food‖, Talanta, 93, 44-48.
  • Kasoju, A., Shahdeo, D., Khan, A.A. et al. ―Fabrication of microfluidic device for Aflatoxin M1 detection in milk samples with specific aptamers‖. Sci Rep. 2020,10, 4627.
  • Kim, E.K., Shon, D.H., Ryu, D., Park, J.W., Hwang, H.J., Kim, Y.B. 2000. ― Occurrence of aflatoxin M1 in korean dairy products determined by ELISA and HPLC‖, Food Addit. Contam.,17, 59-64.
  • Li, J., Mo, L., Lu., C.H., Fu, T., Yang, H.H., Tan, W. 2016. ―Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications‖, Chem Soc Rev., 45, 5, 1410–1431.
  • Liu, Y., Yan, K., Okoth, O. K., Zhang, J. 2015. ―A label-free photoelectrochemical aptasensor based on nitrogen-doped graphene quantum dots for chloramphenicol determination‖, Biosensors and Bioelectronics, 74, 1016-1021.
  • Liu, H., Liu, W., Han, D., Wang, S. 2017. ―Detection of the presence of reconstituted milk in raw milk and in pasteurized milk using synchronous fluorescence spectroscopy‖, Food Anal. Methods, 10, 2078-2084.
  • Luo, C., Lei, Y., Yan , L., Yu, T., Li, Q., Zhang, D., Ding, S., Ju, H. 2012. ―A Rapid and Sensitive Aptamer Based Electrochemical Biosensor for Direct Detection of Escherichia Coli O111‖, Electroanalysis, 24, 5, 1186-1191.
  • Ma, X., Jiang, Y., Jia, F., Yu, Y., Chen, J., Wang, Z. 2014. ―An aptamer-based electrochemical biosensor for the detection of Salmonella‖, J Microbiol Methods, 98, 94-8.
  • Madalı, B., Ayaz, A. 2017. ―Aflatoxin M1 in Dairy Products: Exposure and Health Risks‖, Hacettepe University Faculty of Health Sciences Journal , 4, 1, 1-14.
  • Mamani, M. C. V., Reyes, F. G. R., Ratha, S. 2009. ―Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD‖, Food Chem., 117, 3, 545-552.
  • Marras, S.A.E., Kramer, F.R., Tyagi, S., 2002. ―Efficiencies of fluorescence resonance energy transfer and contact mediated quenching in oligonucleotide probes‖, Nucleic Acids Research, 30, e122.
  • Mehta, J., Van Dorst, B., Rouah-Martin, E., Herrebout, W., Scippo, M. L., Blust, R. and Robbens, J. 2011. ―In vitro selection and characterization of DNA aptamers recognizing chloramphenicol‖, J. Biotechnol., 155, 361-369.
  • Mishra, R.K., Hayat, A., Catanante, G., Ocaña, C., Marty, J.L. 2015. ―A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries‖, Anal Chim Acta., 889,106-12.
  • Miyata, T., Asami, N., Uragami, T. 1999. ―A reversibly antigen-responsive hydrogel‖, Nature, 399, 766-769.
  • Mottier, P., Parisod, V., Gremaud, E., Guy, P. A., Stadler, R. H. 2003. ―Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography– electrospray ionization tandem mass spectrometry‖, J. Chromatogr. A., 994, 1–2, 75-84.
  • Nagahara, S., Matsuda, T. 1996. ―Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers‖, Polym. Gels Networks, 4, 111-127.
  • Neuhaus, B. K., Hurlbut, J. A., Hammack, W. 2002. ―LC/MS/MS analysis of chloramphenicol in shrimp‖, USFDA, 18, 20-31.
  • Nguyen, B.H., Tran, L.D., Do, Q.P., Nguyen, H.L., Tran, N.H., Nguyen, P.X. 2013. ―Label- free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor‖, Mater. Sci. Eng.: C., 33, 2229-2234.
  • Ocaña, C., Hayat, A., Mishra, R., Vasilescu, A., del Valle, M., Marty, J.L. 2015. ―A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection‖, Analyst, 140, 12, 4148-53.
  • Owczarzy, R., Moreira, B.G., You, Y., Behlke, M.A., Walder, J.A. 2008. ―Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations‖, Biochemistry, 47, 19, 5336-53.
  • Paniel, N., Radoi, A., Marty, J.L. 2010. ―Development of an Electrochemical Biosensor for the Detection of Aflatoxin M1 in milk‖, Sensors (Basel), 10, 10, 9439-9448.
  • Park, I. Kim D. 2006. ―Development of a chemiluminescent immunosensor for chloramphenicol‖, Anal. Chim. Acta, 578,19-24.
  • Pfenning, A. P., Roybal, J. E., Rupp, H. S., Turnipseed, S. B., Gonzales, S. A. and Hurlbut, J. A., 2000. ―Simultaneous determination of residues of chloramphenicol, florfenicol, florfenicol amine and thiamphenicol in shrimp tissue by gas chromatography with electron capture detection‖, J. AOAC Int., 83, 1, 26-30.
  • Postelmans, A., Aernouts, B., Jordens, J., Van Gerven, T., Saeys, W. 2020. ―Milk homogenization monitoring: fat globule size estimation from scattering spectra of milk‖, Innov. Food Sci. Emerg. Technol., 60, 102311-102320.
  • Proske, D., Blank, M., Buhmann, R., Resch, A. 2005. ―Aptamers—basic research, drug development, and clinical applications‖, Appl. Microbiol. Biotechnol. 69, 4, 367-374.
  • Qiu, Y., Park K. 2001. ―Environment-sensitive hydrogels for drug delivery‖, Adv. Drug Delivery Rev., 53, 321-339.
  • Resmi Gazete Sayı 28157. 2011. ―Türk Gida Kodeksi Bulaşanlar Yönetmeliği‖. http://www.resmigazete.gov.tr/eskiler/2011/12/20111229M3-8.htm (Son erişim tarihi 27.02.2023)
  • Robertson, D.L., Joyce, G.F. 1990. ―Selection in vitro of an RNA enzyme that specifically cleaves single stranded DNA‖, Nature,344, 6265, 467-468.
  • Rodziewicz, L., Zawadzka, I. 2007. ―Rapid determination of chloramphenicol residues in honey by liquid chromatography tandem mass spectrometry and the validation of method based on 2002/657/EC‖, APIACTA, 42, 25–30.
  • Seliktar, D. 2012. ―Designing cell-compatible hydrogels for biomedical applications‖, Science, 336, 1124–1128.
  • Singh, S., Mishra, A., Kumari, R., Sinha, K.K., Singh, K.S., Das, P. 2017. ―Carbon dots assisted formation of DNA hydrogel for sustained release of drug‖, Carbon, 114, 169-176.
  • Sørensen, L.K., Elbæk, T.H. 2005. ―Determination of mycotoxins in bovine milk by liquid chromatography tandem mass spectrometry‖, J. Chromatogr. B, 820, 183–196.
  • Sun, X., Li, F., Shen, G., Huang, J., Wang, X. 2014. ― Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection‖, Analyst, 139, 1, 299-308.
  • Tajik, H., Malekinejad, H., Razavi-Rouhani, S.M., Pajouhi, M.R., Mahmoudi, R., Haghnazari, A. 2010. ―Chloramphenicol residues in chicken liver, kidney and muscle: A comparison among the antibacterial residues monitoring methods of four plate test, ELISA, and HPLC‖, Food & Chemical Toxicology, 48, 2464-2468.
  • Takahashi, M. 2018. ―Aptamers targeting cell surface proteins‖, Biochimie, 145, 63-72. Tang, H., Duan, X., Feng, X., Liu, L., Wang, S., Li, Y., Zhu, D. 2009. ―Fluorescent DNA- poly(phenylenevinylene) hybridhydrogelsformonitoringdrugrelease‖, Chem. Commun., 641- 643.
  • T.C. Gıda, Tarım ve Hayvancılık Bakanlığı, Yönetmelik No: 30000 ―Türk Gıda Kodeksi Hayvansal Gıdalarda Bulunabilecek Farmakolojik Aktif Maddelerin Sınıflandırılması Ve Maksimum Kalıntı Limitleri Yönetmeliği‖, 2017, http://www.resmigazete.gov.tr/eskiler/2017/03/20170307-4.htm (Son erişim tarihi: 27.02.2023)
  • Teixeira, S., Delerue-Matos, C., Alves, A., Santos, L. 2008. ―Fast screening procedure for antibiotics in wastewaters by direct HPLC-DAD analysis‖, J. Separ. Sci., 31, 2924-2931.
  • Trashin, S., de Jong, M., Breugelmans, T., Pilehvar, S., De Wael, K. 2015. ―Label Free Impedance Aptasensor for Major Peanut Allergen Ara h 1‖, Electroanalysis, 27, 1, 32-37.
  • Tuerk, C., Gold, L. 1990. ―Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNApolymerase‖, Science, 249, 505-510.
  • van Bambeke, F., Mingeot-Leclercq, MP., Glupczynski, Y., Tulkens,P.M. 2017. ―137 – Mechanisms of Action‖. Infectious Diseases, 4th edition. Editörler: Cohen, J., Powderly, W.G, Opal, S.M., 1162-1180.
  • van Vlierberghe, S., Dubruel, P., Schacht, E. 2011. ―Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review‖, Biomacromolecules, 12, 1387- 1408.
  • Wang, Y., Liu, N., Ning, B., Liu, M., Lv, Z., Sun, Z., Peng, Y., Chen, C., Li, J., Gao, Z. 2012. ―Simultaneous and rapid detection of six different mycotoxins using an immunochip‖, Biosensors Bioelectronics, 34, 44-50.
  • Wang, X., Zhang, W., Gao, X., Sun, Z., Sun, X., Guo, Y., Li, F., Boboriko, N.E. 2022. ―Fluorescent aptasensor based on DNA-AgNCs emitting in the visible red wavelength range for detection of kanamycin in milk‖, Sensors and Actuators B: Chemical, 360, 131665.
  • Wilson, W.R., Cockerill, F.R. 1987. ―Tetracyclines, chloramphenicol, erythromycin, and clindamycin‖, Mayo Clin Proc., 62, 10, 906-15.
  • Vaz, A., Silva, A.C.C., Rodrigues, P., Venancio, A. ―Detection Methods for Aflatoxin M1 in Dairy Products‖. Microorganisms 2020, 8, 2, 246.
  • Vuran, B., Ulusoy, H.İ., Sarp, G., Yilmaz, E., Morgül, U., Kabir, A., Tartaglia, A., Locatelli, M., Soylak, M. 2021. ―Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection‖, Talanta, 230, 122307.
  • Yadav, S.K., Agrawal, B., Chandra, P., Goyal, R.N. 2014. ―In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor‖, Biosensors and Bioelectronics, 55, 337-342.
  • Yan, L., Zhu, Z., Zou, Y., Huang, Y., Liu, D., Jia, S., Xu, D., Wu, M., Zhou, Y., Zhou, S., Yang C. J. 2013. ―Target-Responsive ―Sweet‖ Hydrogel with Glucometer Readout for Portable and Quantitative Detection of Non-Glucose Targets‖, J. Am. Chem. Soc., 135, 3748–3751.
  • Yang, H., Liu, H., Kang, H., Tan W. 2008. ―Engineering Target-Responsive Hydrogels Based on Aptamer−Target Interactions‖, J. Am. Chem. Soc., 130, 6320–6321.
  • You, Y., Tataurov, A.V., Owczarzy, R., 2011. ―Measuring thermodynamic details of DNA hybridization using fluorescence‖, Biopolymers, 95, 472-486.
  • Yuan, J., Oliver, R., Aguilar, M. I. and Wu, Y. 2008. ―Surface plasmon resonance assay for chloramphenicol‖, Anal. Chem., 80, 8329-8333.
  • Zhao, L., Ball, C. H. 2009. ―Determination of Chloramphenicol, Florfenicol, and Thiamphenicol in Honey Using Agilent SampliQ OPT Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry‖, Agilent LC/MS Newsletter
APA BAYRAC C, ARAN G (2023). Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. , 0 - 89. 218Z125
Chicago BAYRAC CEREN,ARAN GÜLNUR CAMIZCI Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. (2023): 0 - 89. 218Z125
MLA BAYRAC CEREN,ARAN GÜLNUR CAMIZCI Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. , 2023, ss.0 - 89. 218Z125
AMA BAYRAC C,ARAN G Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. . 2023; 0 - 89. 218Z125
Vancouver BAYRAC C,ARAN G Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. . 2023; 0 - 89. 218Z125
IEEE BAYRAC C,ARAN G "Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi." , ss.0 - 89, 2023. 218Z125
ISNAD BAYRAC, CEREN - ARAN, GÜLNUR CAMIZCI. "Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi". (2023), 0-89. https://doi.org/218Z125
APA BAYRAC C, ARAN G (2023). Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. , 0 - 89. 218Z125
Chicago BAYRAC CEREN,ARAN GÜLNUR CAMIZCI Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. (2023): 0 - 89. 218Z125
MLA BAYRAC CEREN,ARAN GÜLNUR CAMIZCI Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. , 2023, ss.0 - 89. 218Z125
AMA BAYRAC C,ARAN G Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. . 2023; 0 - 89. 218Z125
Vancouver BAYRAC C,ARAN G Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi. . 2023; 0 - 89. 218Z125
IEEE BAYRAC C,ARAN G "Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi." , ss.0 - 89, 2023. 218Z125
ISNAD BAYRAC, CEREN - ARAN, GÜLNUR CAMIZCI. "Kloramfenikol ve Aflatoksin M1 Gıda Bulaşanlarına Özgü DNA Hidrojel Tabanlı Dual Aptasensör Platformunun Geliştirilmesi". (2023), 0-89. https://doi.org/218Z125