Yıl: 2017 Cilt: 21 Sayı: 1 Sayfa Aralığı: 19 - 29 Metin Dili: Türkçe DOI: 10.12991/marupj.259877 İndeks Tarihi: 16-01-2019

Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri

Öz:
Polifenoller bitkilerin kök, tohum, çiçek, yaprak, dal ve gövde gibi tüm kısımlarında ve çay, kahve, şarap gibi bitkisel ürünlerde yüksek miktarlarda bulunurlar. Polifenollerin antioksidan, antikanser, anti-inflamatuar, anti-koagülan ve anti-mikrobiyal etkileri olduğunu belirten çok sayıda araştırma bulunmaktadır. Son yıllarda araştırıcılar bu bileşiklerin anti-kanser etkisinde rol alan moleküler mekanizmaların aydınlatılmasına yönelmiştir. Ancak, hem etki mekanizmalarının kanser hücre tipine göre farklılık göstermesi hem de biyoyararlanımlarının sınırlı olması, biyoyararlanımı arttıracak ve kanser hücre tipine spesifik yaklaşımların geliştirilmesini gerekli kılmaktadır. Bu derlemede, kurkumin, kuersetin ve çay kateşinlerinin yapısal özellikleri, biyoyararlanımları, biyolojik etkileri ve anti-kanser etki mekanizmaları tartışılmıştır.
Anahtar Kelime:

Konular: Biyoloji Biyokimya ve Moleküler Biyoloji Gıda Bilimi ve Teknolojisi

Anti-cancer effects of curcumin, quercetin and tea catechins

Öz:
Polyphenols are present in high amounts in all parts of plants including roots, seeds, flowers, leaves, branches and trunk as well as plant derived products such as tea, coffee and wine. Extensive amount of information is available on biological effects of polyphenols including antioxidant, anti-cancer, antiinflammatory, anti-coagulant and anti-microbial activities. In recent years, researchers have turned their interest towards identifying molecular mechanisms underlying the anti-cancer effects of these compounds. However, the limited bioavailability of polyphenols and the existence of differences in cancer cells in terms of intracellular mechanisms affected has necessitated the use of specific approaches to individual cancer cell types as well as methods of increasing bioavailability. In this review, the structures, bioavailability, biological activities and molecular mechanisms of anti-cancer effects of curcumin, quercetin and tea catechins are discussed.
Anahtar Kelime:

Konular: Biyoloji Biyokimya ve Moleküler Biyoloji Gıda Bilimi ve Teknolojisi
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • luo H, tang l, tang M, Billam M, Huang t, Yu J, et al. Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis 2006; 27: 262-8.
  • Chen D, Pamu S, Cui Q, Chen tH, Dou QP. novel epigallocatechin gallate (EGCG) analogs activate AMPactivated protein kinase pathway and target cancer stem cells. Bioorgan Med Chem 2012; 20: 3031-7.
  • Padmavathi B, upreti M, Singh V, rao Ar, Singh rP, rath PC. Chemoprevention by Hippophae rhamnoides: effects on tumorigenesis, phase II and antioxidant enzymes, and IrF-1 transcription factor. nutr Cancer 2005; 51: 59-67.
  • rizzi F, naponelli V, Silva A, Modernelli A, ramazzina I, Bonacini M, tardito S, Gatti r, uggeri J, Bettuzzi S. Polyphenon E®, a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized Pnt1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 2014; 35: 828-39.
  • Yılmaz AM, Mutlu Altundağ E, Karademir B, Koçtürk S, taga Y, Yalçın AS. Effect of tea polyphenols on phase I and phase II enzyme activities and apoptotic cell death mechanism in breast cancer cells. turk J Biochem 2016; 41-S4:81-5.
  • Koňariková K, Ježovičová M, Keresteš J, Gbelcová H, Ďuračková z, Žitňanová I. Anticancer effect of black tea extract in human cancer cell lines. SpringerPlus 2015; 4: 127.
  • Skotnicka M, Chorostowska-Wynimko, Jankun JJ, SkrzypczakJankun E. The black tea bioactivity: an overview. Centr Eur J Immunol 2011; 36: 284-92.
  • Bhattacharya u, Halder B, Mukhopadhyay S, Giri AK. role of oxidation-triggered activation of JnK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells. Cancer Sci 2009;100: 1971-8.
  • Min K-J, taeg Kyu Kwon tK. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr Med res 2014; 3: 16–24.
  • lin YP, Chen tY, tseng HW, lee MH, Chen St. neural cell protective compounds isolated from Phoenix hanceana var. formosana. Phytochem 2009; 70: 1173–81.
  • Ban JY, Jeon SY, Bae K, Song KS, Seong YH, Catechin and epicatechin from Smilacis chinae rhizome protect cultured rat cortical neurons against amyloid beta protein (25–35)-induced neurotoxicity through inhibition of cytosolic calcium elevation. life Sci 2006; 79: 2251–9.
  • Jain P, Kumar n, Josyula Vr, Jagani HV, udupa n, Mallikarjuna-rao C, Vasanth-raj P. A study on the role of (+)-catechin in suppression of HepG2 proliferation via caspase dependent pathway and enhancement of its in vitro and in vivo cytotoxic potential through liposomal formulation. Eur J Pharm Sci 2013; 50: 353–65.
  • Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 2005; 26: 958-67.
  • nihal M, Ahmad n, Mukhtar H, Wood GS. Antiproliferative and proapoptotic effects of epigallocatechin-3gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer 2005; 11: 513-21.
  • Adhami VM, Malik A, zaman n, Sarfaraz S, Siddiqui IA, Syed Dn, Afaq F, Pasha FS, Saleem M, Mukhtar H. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer res 2007; 13: 1611-9.
  • Yang CS, Wang H. Mechanistic issues concerning cancer prevention by tea catechins. Mol nutr Food res 2011; 55: 819-31.
  • Ping Dou Q. Molecular mechanisms of green tea polyphenols. nutr Cancer 2009; 61: 827–35.
  • Dorta DJ, Pigoso AA, Mingatto FE, rodrigues t, Prado IM, Helena AF, uyemura SA, Santos AC, Curti C. The interaction of flavonoids with mitochondria: effects on energetic processes. Chem Biol Interact 2005; 152: 67–78.
  • tabassum H, Parvez S, rehman H, Banerjee BD, raisuddin S. Catechin as an antioxidant in liver mitochondrial toxicity: inhibition of tamoxifen-induced protein oxidation and lipid peroxidation. J Biochem Mol toxicol 2007; 21: 110–7.
  • üstün ç, Demirci n. çay bitkisinin (Camelia sinensis l.) tarisel gelişimi ve tıbbi açıdan değerlendirilmesi. lokman Hekim J 2013; 3:5-12.
  • Chen z-M, lin z. tea and human health: biomedical functions of tea active components and current issues. J zhejiang univSci B (Biomed & Biotechnol) 2015; 16: 87-102.
  • ravishankar D, Watson KA, Boateng SY, Green rJ, Greco F, Osborn HM. Exploring quercetin and luteolin derivatives as antiangiogenic agents. Eur J Med Chem 2015; 97: 259–74.
  • Suksiriworapong J, Phoca K, ngamsom S, Sripha K, Moongkarndi P, Junyaprasert VB. Comparison of poly(εcaprolactone) chain lengths of poly(ε-caprolactone)-co-d-αtocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBr3 breast cancer cells. Eur J Pharm Biopharm 2016; 101: 15–24.
  • Moretti E, Mazzi l, Bonechi C, Salvatici MC, Iacoponi F, rossi C, Collodel G. Effect of quercetin-loaded liposomes on induced oxidative stress in human spermatozoa. reprod toxicol 2016; 60: 140–7.
  • lugli E, Ferraresi r, roat E, troiano l, Pinti M, nasi M. Quercetin inhibits lymphocyte activation and proliferation without inducing apoptosis in peripheral mononuclear cells. leuk res 2009; 33: 140–50.
  • Crebelli r, Aquilina G, Falcone E, Carere A. urinary and faecal mutagenicity in Sprague–Dawley rats dosed with the food mutagens quercetin and rutin. Food Chem toxicol 1987; 25: 9–15.
  • Stoewsand GS, Anderson Jl, Boyd Jn, Hrazdina G, Babish JG, Walsh KM, losco P. Quercetin: a mutagen, not a carcinogen, in Fischer rats. J toxicol Environ Health 1984; 14: 105–14.
  • Haskins AH, Su C, Engen A, Salinas VA, Maeda J, uesaka M, Aizawa Y, Kato tA. Data for induction of cytotoxic response by natural and novel quercetin glycosides. Data Brief 2015; 6: 262–6.
  • da Silva J, Herrmann SM, Heuser V, Peres W, Possa Marroni n, Gonzalez-Gallego J, Erdtmann B. Evaluation of the genotoxic effect of rutin and quercetin by comet assay and micronucleus test. Food Chem toxicol 2002; 40: 941–7.
  • Gibellini l, Pinti M, nasi M, Biasi SD, roat, E, Bertoncelli l, Cossarizza A. Interfering with rOS metabolism in cancer cells: the potential role of quercetin. Cancers 2010; 2: 12881311.
  • liou G-Y, Storz P. reactive oxygen species in cancer. Free radic res 2010; 44: 479-96.
  • Hsieh tC, Wu JM. targeting CWr22rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals EGCG, genistein and quercetin. Anticancer res 2009; 29: 4025–32.
  • nessa Mu, Beale P, Chan C, Yu JQ, Huq F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer res 2011; 31: 3789–97.
  • Appari M, Babu Kr, Kaczorowski A, Gross W, Herr I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by mirlet-7 induction and K-ras inhibition. Int J Oncol 2014; 45: 1391–1400.
  • Kuhar M, Imran S, Singh n. Curcumin and quercetin combined with cisplatin to induce apoptosis in human laryngeal carcinoma Hep-2 cells through the mitochondrial pathway. J Cancer Mol 2007; 3: 121–8.
  • Mutlu Altundağ E, Kasacı t, Yılmaz AM, Karademir B, Koçtürk S, taga Y, Yalçın AS. Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J Thyroid res 2016; 9843675.
  • Khan F, niaz K, Maqbool F, Hassan FI, Abdollahi M, Venkata KCn, nabavi SM, Bishayee A. Molecular targets underlying the anticancer effects of quercetin: an update. nutrients 2016; 8: E529.
  • Endale M, Park SC, Kim S, Kim SH, Yang Y, Cho JY, rhee MH. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/ nF-κB-induced inflammatory mediators production in rAW 264.7 cells. Immunobiology 2013; 218:1452-67.
  • tan WF, lin lP, li MH, zhang YX, tong YG, Xiao D, Ding J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol 2003; 459: 255–62.
  • Vijayababu Mr, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, Arunakaran J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Mol Cell Biochem 2006; 287: 109–16.
  • Ong C, tran E, nguyen t, Ong C, lee S, lee J, ng C, leong C, Huynh H. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in bad and hypophosphorylated retinoblastoma expressions. Oncol rep 2004; 11: 727–33.
  • Granado-Serrano AB, Martin MA, Bravo l, Goya l, ramos S. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3 kinase/Akt and ErK pathways in a human hepatoma cell line (HepG2). J nutr 2006; 136: 2715-21.
  • Chien SY, Wu YC, Chung JG, Yang JS, lu HF, tsou MF, Wood WG, Kuo SJ, Chen Dr. Quercetin-induced apoptosis acts through mitochondrial and caspase-3 dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp toxicol 2009; 28: 493-503.
  • Casella Ml, Parody JP, Ceballos MP, Quiroga AD, ronco Mt, Francés DE, Monti JA, Pisani GB, Carnovale CE, Carrillo MC, de luján Alvarez M. Quercetin prevents liver carcinogenesis by inducing cell cycle arrest, decreasing cell proliferation and enhancing apoptosis. Mol nutr Food res 2014; 58: 289–300.
  • Sugantha Priya E, Selvakumar K, Bavithra S, Elumalai P, Arunkumar r, raja Singh P, Brindha Mercy A, Arunakaran J. Anti-cancer activity of quercetin in neuroblastoma: an in vitro approach. neurol Sci 2014; 35: 163–70.
  • Bishayee K, Ghosh S, Mukherjee A, Sadhukhan r, Mondal J, Khuda-Bukhsh Ar. Quercetin induces cytochrome-c release and rOS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug–DnA interaction. Cell Prolif 2013; 46: 153–63.
  • Vidya Priyadarsini, r, Senthil Murugan, r, Maitreyi S, ramalingam K, Karunagaran, D, nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (Hela) cells through p53 induction and nF-kB inhibition. Eur J Pharmacol 2010; 649: 84–91.
  • Youn H, Jeong JC, Jeong YS, Kim EJ, um SJ. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol Pharm Bull 2013; 36: 944–51.
  • nam J-S, Sharma Ar, nguyen lt, Chakraborty C, Sharma G, lee S-S. Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules 2016; 21: E108.
  • Bokkenheuser VD, Shackleton CH, Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem J 1987; 3: 953-6.
  • Graefe Eu, Derendorf H, Veit M. Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int J Clin Pharmacol Ther 1999; 5: 219-33.
  • nijveldt rJ, van nood E, van Hoorn DE, Boelens PG, van norren K, van leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin nutr 2001; 74: 418–25.
  • Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 1990; 186: 343–55.
  • Moon YJ, Wang l, DiCenzo r, Morris ME. Quercetin pharmacokinetics in humans. Biopharm Drug Dispos 2008; 29: 205-17.
  • Kelly GS. Quercetin. Monograph. Altern Med rev 2011; 16: 172–94.
  • leung MH, Colangelo H, Kee tW. Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. langmuir 2008; 24: 5672–5.
  • tønnesen HH, Karlsen J. Studies on curcumin and curcuminoids. z lebensm unters Forsch 1985; 180: 402–4.
  • nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, nabavi SM. Curcumin and liver disease: from chemistry to medicine. Compr rev Food Sci Food Safety 2014; 13: 62–77.
  • Schneider C, Gordon On, Edwards rl, luis PB. Degradation of curcumin: from mechanism to biological implications. J Agric Food Chem 2015; 63: 7606–14.
  • Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 2013; 15: 195-218.
  • Shanmugam MK, rane G, Kanchi MM, Arfuso F, Chinnathambi A, zayed ME, Alharbi SA, tan BK, Kumar AP, Sethi G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20: 2728-69.
  • tuorkey M. Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci 2014; 6: 139–46.
  • Shehzad A, lee YS. Molecular mechanisms of curcumin action: Signal transduction. Biofactors 2013; 39: 27–36.
  • zhang C, li B, zhang X, Hazarika P, Aggarwal BB, Duvic M. Curcumin selectively induces apoptosis in cutaneous t-cell lymphoma cell lines and patients’ PBMCs: Potential role for StAt-3 and nF-kappaB signaling. J Investig Dermatol 2010; 130: 2110–9.
  • Guo H, Xu YM, Ye zQ, Yu JH, Hu XY. Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor. Pharmazie 2013; 68: 431–4.
  • Chen SS, Michael A, Butler-Manuel SA. Advances in the treatment of ovarian cancer: A potential role of antiinflammatory phytochemicals. Discov Med 2012; 13: 7–17.
  • zanotto-Filho A, Braganhol E, Schroder r, de Souza lH, Dalmolin rJ, Pasquali MA, Gelain DP, Battastini AM, Moreira JC. nFkappaB inhibitors induce cell death in glioblastomas. Biochem Pharmacol 2011; 81: 412–24.
  • Duarte VM, Han E, Veena MS, Salvado A, Suh JD, liang lJ, Faull KF, Srivatsan ES, Wang MB. Curcumin enhances the effect of cisplatin in suppression of head and neck squamous cell carcinoma via inhibition of IKKbeta protein of the nFkappaB pathway. Mol Cancer Ther 2010; 9, 2665–75.
  • Shin HK, Kim J, lee EJ, Kim SH. Inhibitory effect of curcumin on motility of human oral squamous carcinoma YD-10B cells via suppression of ErK and nF-kappaB activations. Phytother res 2010; 24: 577–82.
  • Sandur SK, Deorukhkar A, Pandey MK, Pabon AM, Shentu S, Guha S, Aggarwal BB, Krishnan S. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible nF-kappaB activity. Int J radiat Oncol Biol Phys 2009; 75: 534–42.
  • zong H, Wang F, Fan QX, Wang lX. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by nFkappa B signaling pathways. Mol Biol rep 2012; 39: 4803–8.
  • Jutooru I, Chadalapaka G, lei P, Safe S. Inhibition of nFkappaB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein down-regulation. J Biol Chem 2010; 285: 25332–44.
  • Plummer SM, Holloway KA, Manson MM, Munks rJ, Kaptein A, Farrow S, Howells l. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of nF-kappaB activation via the nIK/IKK signalling complex. Oncogene 1999; 18: 6013–20.
  • Singh S, Aggarwal BB. Activation of transcription factor nF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 1995; 270: 24995–25000.
  • Chaturvedi MM, Sung B, Yadav Vr, Kannappan r, Aggarwal BB. nF-kappaB addiction and its role in cancer: “One size does not fit all”. Oncogene 2011; 30: 1615-30.
  • Heger M, van Golen rF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol rev 2014; 66: 222–307.
  • Prusty BK, Das BC. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in Hela cells by curcumin. Int J Cancer 2005; 113: 951–60.
  • Polytarchou C, Hatziapostolou M, Papadimitriou E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J Biol Chem 2005; 280: 40428–35.
  • Dyer Jl, Khan Sz, Bilmen JG, Hawtin Sr, Wheatley M, Javed Mu, Michelangeli F. Curcumin: A new cell-permeant inhibitor of the inositol 1,4,5-trisphosphate receptor. Cell Calcium 2002; 31: 45–52.
  • Woo MS, Jung SH, Kim SY, Hyun JW, Ko KH, Kim WK, Kim HS. Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys res Commun 2005; 335: 1017–25.
  • Dhandapani KM, Mahesh VB, Brann DW. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and nFkappaB transcription factors. J neurochem 2007; 102: 522–38.
  • Eferl r, Wagner EF. AP-1: A double-edged sword in tumorigenesis. nat rev Cancer 2003; 3: 859–68.
  • Oyagbemi AA, Saba AB, Ibraheem AO. Curcumin: From food spice to cancer prevention. Asian Pac J Cancer Prev 2009; 10: 963–7.
  • Shehzad A, Wahid F, lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm 2010; 343: 489–99.
  • Vermeulen K, Van Bockstaele Dr, Berneman zn. The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36: 131–49.
  • Williams GH, Stoeber K. The cell cycle and cancer. J Pathol 2012; 226: 352–64.
  • Sharma r, Gescher A, Steward W. Curcumin: The story so far. Eur J Cancer 2005; 41: 1955-68.
  • Maheshwari rK, Singh AK, Gaddipati J, Srimal rC. Multiple biological activities of curcumin: A short review. life Sci 2006; 78: 2081-7.
  • Mullaicharam Ar, Maheswaran A. Pharmacological effects of curcumin. Int J nutr Pharmacol neurol Dis 2012; 2: 92-9.
  • Payton F, Sandusky P, Alworth W. nMr study of the solution structure of curcumin. J nat Prod 2007; 70: 143-6.
  • Choi BH, Kim W, Wang QC, Kim DC, tan Sn, Yong JW, Kim Kt, Yoon HS. Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer lett 2008; 1: 37-45.
  • Chahar MK, Sharma n, Dobhal MP, JC. Flavonoids: A versatile source of anticancer drugs. Pharmacogn rev 2011; 5: 1–12.
  • Wang HK. The therapeutic potential of flavonoids. Expert Opin Investig Drugs 2000; 9: 2103–19.
  • Aktan AÖ, Yalçın AS. Ischemia-reperfusion injury, reactive oxygen metabolites, and the surgeon. turkish J Med Sci 1998; 28: 1-5.
  • Yalçın AS. Antioksidanlar. Klin Gel 1998; 11: 342-6.
  • Gupta rK, Patel AK, Shah n, Chaudhary AK, Jha uK, Yadav uC, Gupta PK, Pakuwal u. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev 2014; 15: 4405-9.
  • rodrigo r, libuy M, Feliu F, Hasson D. Polyphenols in disease: From diet to supplements. Curr Pharm Biotechnol 2014; 15: 304-17.
  • Kroft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann n Y Acad Sci 1998; 854: 435-42.
  • Beecher Gr. Overview of dietary flavonoids: nomenclature, occurrence and intake. J nutr 2003; 10: 3248-54.
  • Manach C, Scalbert A, Morand C, rémésy C, Jiménez l. Polyphenols: food sources and bioavailability. Am J Clin nutr 2004; 79: 727-47.
  • Farzaei MH, Bahramsoltani r, rahimi r. Phytochemicals as adjunctive with conventional anticancer therapies. Curr Pharm Des 2016; 22: 4201-18.
  • Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, tiwari AK. natural polyphenols in cancer chemoresistance. nutr Cancer 2016; 68: 879-91.
  • Amin ArMr, Kucuk O, Khuri Fr, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol 2009; 27: 2712–25.
  • Kelloff GJ, Boone CW, Steele VE, Fay Jr, lubet rA, Crowell JA, Sigman, CC. Mechanistic considerations in chemopreventive drug development. J Cell Biochem Suppl 1994; 20: 1-24.
  • Morse, MA, Stoner GD. Cancer chemoprevention principles and prospects. Carcinogenesis 1993; 14: 1737-46.
  • ting AH, McGarvey KM, Baylin SB. The cancer epigenome: components and functional correlates. Genes Dev 2006; 20: 3215-3331.
  • Pitot HC. The molecular biology of carcinogenesis. Cancer 1993; 72: 962-70.
  • ziegler rG, Colavito EA, Hartge P, McAdams MJ, Schoenberg JB, Mason tJ, Fraumeni JF. Importance of alpha-carotene, beta-carotene, and other phytochemicals in the etiology of lung cancer. natl Cancer Inst 1996; 9: 612-5.
  • Steinmetz KA, Potter JD. Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control 1991; 6: 427-42.
  • World Cancer report 2014, Ed: Stewart BW, Wild CP. lyon, 2014. http://publications.iarc.fr/non-Series-Publications/ World-Cancer-reports/World-Cancer-report-2014
  • Cragg, GM, newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol 2005; 100: 72-9.
APA YALÇIN A, Yılmaz Göler A, ALTUNDAĞ E, KOÇTÜRK A (2017). Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. , 19 - 29. 10.12991/marupj.259877
Chicago YALÇIN A. Süha,Yılmaz Göler Ayşe Mine,ALTUNDAĞ Ergül Mutlu,KOÇTÜRK AYŞE SEMRA Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. (2017): 19 - 29. 10.12991/marupj.259877
MLA YALÇIN A. Süha,Yılmaz Göler Ayşe Mine,ALTUNDAĞ Ergül Mutlu,KOÇTÜRK AYŞE SEMRA Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. , 2017, ss.19 - 29. 10.12991/marupj.259877
AMA YALÇIN A,Yılmaz Göler A,ALTUNDAĞ E,KOÇTÜRK A Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. . 2017; 19 - 29. 10.12991/marupj.259877
Vancouver YALÇIN A,Yılmaz Göler A,ALTUNDAĞ E,KOÇTÜRK A Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. . 2017; 19 - 29. 10.12991/marupj.259877
IEEE YALÇIN A,Yılmaz Göler A,ALTUNDAĞ E,KOÇTÜRK A "Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri." , ss.19 - 29, 2017. 10.12991/marupj.259877
ISNAD YALÇIN, A. Süha vd. "Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri". (2017), 19-29. https://doi.org/10.12991/marupj.259877
APA YALÇIN A, Yılmaz Göler A, ALTUNDAĞ E, KOÇTÜRK A (2017). Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. Marmara Pharmaceutical Journal, 21(1), 19 - 29. 10.12991/marupj.259877
Chicago YALÇIN A. Süha,Yılmaz Göler Ayşe Mine,ALTUNDAĞ Ergül Mutlu,KOÇTÜRK AYŞE SEMRA Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. Marmara Pharmaceutical Journal 21, no.1 (2017): 19 - 29. 10.12991/marupj.259877
MLA YALÇIN A. Süha,Yılmaz Göler Ayşe Mine,ALTUNDAĞ Ergül Mutlu,KOÇTÜRK AYŞE SEMRA Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. Marmara Pharmaceutical Journal, vol.21, no.1, 2017, ss.19 - 29. 10.12991/marupj.259877
AMA YALÇIN A,Yılmaz Göler A,ALTUNDAĞ E,KOÇTÜRK A Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. Marmara Pharmaceutical Journal. 2017; 21(1): 19 - 29. 10.12991/marupj.259877
Vancouver YALÇIN A,Yılmaz Göler A,ALTUNDAĞ E,KOÇTÜRK A Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri. Marmara Pharmaceutical Journal. 2017; 21(1): 19 - 29. 10.12991/marupj.259877
IEEE YALÇIN A,Yılmaz Göler A,ALTUNDAĞ E,KOÇTÜRK A "Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri." Marmara Pharmaceutical Journal, 21, ss.19 - 29, 2017. 10.12991/marupj.259877
ISNAD YALÇIN, A. Süha vd. "Kurkumin, Kuersetin ve Çay Kateşinlerinin Anti-Kanser Etkileri". Marmara Pharmaceutical Journal 21/1 (2017), 19-29. https://doi.org/10.12991/marupj.259877