Yıl: 2018 Cilt: 35 Sayı: 1 Sayfa Aralığı: 1 - 10 Metin Dili: Türkçe İndeks Tarihi: 29-05-2019

Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri

Öz:
Ülkemizde yetişen 12 üzüm (7 tane çeşit, 5 tane yabani tip) genotipine ait üzüm tanelerinin kabuk, çekirdek, tane eti ve bütün üzüm tanesinden elde edilen ekstraklardaki, toplam fenolik madde miktarı (TPMM), toplam flavonoid madde miktarı (TFMM) ve antioksidan aktiviteler incelenmiştir. Antioksidan aktivite DPPH (2.2-difenil-1- pikrilhidrazil) yöntemiyle ölçülmüştür. TPMM en yüksek Hafızali çeşidinin çekirdeğinde 1694 mg GAE (gallik asit eşdeğeri) 100 gYA-1 (yaş ağırlık), en düşük ise aynı çeşidin tane etinde (305 mg GAE 100 gYA-1) saptanmıştır. TFMM incelenen tüm üzümlerde 131-714 mg CTE (kateşin eşdeğeri) 100 gYA-1 arasında değiştiği saptanmıştır. Üzüm örnekleri, toplam fenolik madde ve toplam flavonoid bakımından karşılaştırıldığında, en yüksek miktarlar üzüm çekirdeklerinde bulunmuş; bunu üzüm kabuğu, üzüm tanesi ve tane eti izlemiştir. Ayrıca, çekirdekler diğer bitki kısımlarına ve BHT (Butillenmiş Hidroksi Toluen)’ye göre daha yüksek antioksidan aktivite göstermiştir.
Anahtar Kelime:

Konular: Biyoloji Bahçe Bitkileri Ziraat Mühendisliği Gıda Bilimi ve Teknolojisi

Some chemical phenolic content and antioxidant activity variations in different parts of grape berry

Öz:
Total phenolics, total flavonoids and antiradical activity of skin, seed, peel and whole berry in 12 grape (7 cultivar, 5 wild-type) genotypes grown in Turkey were examined. Antioxidant activity was determined by DPPH (2.2-diphenyl-1- picrylhydrazyl) assay. Highest amount of total phenolics were measured in the seeds of white coloured Hafızali cultivar (1694 mg GAE (gallic acid equivalent) 100 g FW-1 (fresh weight)) while minimum (305 mg GAE 100 gFW-1) in the peel of same cultivar. Total flavonoids ranged from 131 to 714 mg CTE (catechin equivalent) 100 gFW-1 in all parts of grapes tested. The highest amount of total phenolic and flavonoid content were measured in the seeds of all cultivars or types and followed by skin, whole berry and pulp, respectively. Seed extracts showed higher antioxidant activity than that of other berry extracts and BHT.
Anahtar Kelime:

Konular: Biyoloji Bahçe Bitkileri Ziraat Mühendisliği Gıda Bilimi ve Teknolojisi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alonso Borbalan, A.M., Zorro, L., Guillen, D.A., & Garcia Barroso, C. (2003). Study of the polyphenol content of red and white grape varieties by liquid chromatography–mass spectrometry and its relationship to antioxidant power. Journal of Chromatography A, 1012:31-38.
  • Andjelkovic, M., Radovanović, B., Radovanović A., & Andjelkovic, A.M. (2013). Changes in polyphenolic content and antioxidant activity of grapes cv. Vranac during ripening. South African Journal of Enology and Viticulture, 34(2):147-155.
  • Bakkalbaşı, E., Yemiş, O., Aslanova, D., & Artık, N. (2005). Major flavan-3-ol composition and antioksidant activity of seeds from different grape cultivars grown in Turkey. European Food Research and Technology, 221(6):792-797.
  • Bartolome, B., Nunez, V., Monagas, M., & Gomez-Cordoves, C. (2004). In vitro antioxidant activity of red grape skins. European Food Research and Technology, 218(2):173-177.
  • Bilusic Vundac, V. Brantner, A.H., & Plazibat, M. (2007). Content of polyphenolic constituents and antioxidant activity of some Stachys taxa. Food Chemistry, 104(3):1277-1281.
  • Boubals, D., & Mur, G. (1984). The content of total phenols and anthocyanins in different grapevine cultivars. Vitis, Viticulture and Enology Abstracts, 23(2):D13.
  • Bozan B., Tosun G., & Özcan, D. (2008). Study of polyphenol content in the seeds of red grape (Vitis vinifera L.) varieties cultivated in Turkey and their antiradical activity. Food Chemistry, 109(2):426-430.
  • Cheng J., Wei, L., Mei, J., & Wu, J. (2017). Effect of rootstock on phenolic compounds and antioxidant propertiesin berries of grape (Vitis vinifera L.) cv. ‘Red Alexandria’. Scientia Horticulturae, 217:137-144.
  • Costa, E., Silva, J., Cosme, F., & Jordao, A.M. (2015). Adaptability of some French red grape varieties cultivated at two different Portuguese terroirs: Comparative analysis with two Portuguese red grape varieties using physicochemical and phenolic parameters. Food Research International, 78:302-312.
  • Dani, C., Oliboni, L.S., Vanderlinde, R., Bonatto, D., Salvador, M., & Henriques, J.A.P. (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food and Chemical Toxicology, 45(12):2574-2580.
  • Eshghi, S., Salehi, L., & Karami, M.J. (2014). Antioxidant activity, total phenolic compounds and anthocyanin contents in 35 different grapevine (Vitis vinifera L.) cultivars grown in Fars Province. International Journal of Horticultural Science and Technology, 1(2):151-161.
  • Farhadi, K., Esmaeilzadeh, F., Hatami, M., Forough, M., & Molaie R. (2016). Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chemistry, 199:847-855.
  • Göktürk Baydar, N., Özkan, G., & Yaşar, S., (2007). Evaluation of the antiradical and antioxidant potential of grape extracts. Food Control, 18(9):1131-1136.
  • Guendez, R., Kallithraka, S., Makris, D.P., & Kefalas, P. (2005). Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity. Food Chemistry, 89:1-9.
  • Guo, C., Yang, J. Wei, J., Li, Y., Xu, J., & Jiang, Y. (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23(12):1719-1726.
  • Hao, J., Li, L., Wolf, M., Xu, M., Brinsko, B., Yanik, M., Chen, S., Binzer, L., Green, S., Hitz, C., & Yu, L. (2009). Antioxidant properties and phenolic components of grape seeds. Functional Plant Science and Biotechnology, 3:60-68.
  • Harborne, J.B., & Williams, C.A. (2001). Anthocyanins and other flavonoids. Natural Product Reports, 18(3):310-333.
  • Hertog, M.G.L., Hollman, P.C.H., & Venema, D.P. (1992). Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. Journal of Agricultural and Food Chemistry, 40(9):1591-1598.
  • Iacopini, P., Baldi, M., Storchi, P., & Sebastiani, L. (2008). Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. Journal of Food Composition and Analysis, 21(8):589-598.
  • İşçi, B., Gökbayrak, Z., & Keskin, N. (2015). Effects of cultural practices on total phenolics and vitamin c content of organic table grapes. South African Journal of Enology and Viticulture, 36(2):191-194.
  • Kanner, J., Frankel, E., Granit, R., German, B., & Kinsella, J.E. (1994). Natural antioxidants in grape and wines. Journal of Agricultural and Food Chemistry, 42(1):64-69.
  • Karadeniz, F., Burdurlu, H.S., Koca, N., & Soyer, Y. (2005). Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29: 297-303.
  • Karasu, S., Başlar, M., Karaman, S., Kılıçlı, M., Us, A.A., Yaman, H., & Sağdıç, O. (2016). Characterization of some bioactive compounds and physicochemical properties of grape varieties grown in Turkey: Thermal degradation kinetics of anthocyanin. Türkish Journal of Agriculture and Forestry, 40: 177-185.
  • Kustova, I.A., Makarova, N.M., & Valiulina, D.F. (2015). Antioxidant activity of six varieties of grapes from the City of Pyatigorsk harvest 2013. American-Eurasian Journal of Sustainable Agriculture, 9(4):24-30.
  • Lafka, T.I., Sinanoglou, V., & Lazos, E.S. (2007). On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chemistry, 104(3):1206-1214.
  • Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3):255-260.
  • Mau, J.L., Tsa, S.Y, Tseng, Y.H., & Huang, S.J. (2005). Antioxidant properties of methanolic exracts from Ganoderema Huang. Food Chemistry, 93:641-649.
  • Montealegre, R.R., Peces, R.R., Vozmediano, J.L.C., Gascuena, J.M., & Romero, E.G. (2006). Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. Journal of Food Composition and Analysis, 19(6-7):687-693. Mozetic, B., Tomazic, I., Skvarc, A., & Trebse, P. (2006). Determination of polyphenols in white grape berries cv. Rebula. Acta Chimica Slovenica, 53:58-64.
  • Orak H. (2007). Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Scientia Horticulturae, 111(3):235-241.
  • Pastrana-Bonilla, E., Akoh, C.C., Sellaphan, S., & Krewer, G. (2003). Phenolic content and antioxidant capacity of Muscadine grapes. Journal of Agricultural and Food Chemistry, 51(18):5497-5503.
  • Poudel, P.R., Tamura, H., Kataoka, I., & Mochioka, R. (2008). Phenolic compounds and antioxidant activities of skins and seeds of five wild grapes and two hybrids native to Japan. Journal of Food Composition and Analysis, 21(8):622-625.
  • Revilla, E., Alonso, E., & Kovac, V. (1997). The content of catechins and procyanidins in grapes and wines as affected by agroecological factors and technological practices, American Chemical Society, 69–80, Washington, DC.
  • Ruberto, G., Renda, A., Dauqino, C., Amico, V., Spatafora, C., Tringali, C., & De Tommasi, N. (2007). Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chemistry, 100:203-210.
  • Shi, J., Yu, J., Pohorly, J.E., & Kakuda, Y. (2003). Polyphenolics in grape seeds-biochemistry and functionality. Journal of Medicinal Food, 6(4) 291-299.
  • Singleton, V. L., & Essau, P. (1969). Phenolic substances in grapes and wine, and their significance. Advances in Food Research (Suppl. 1), Academic Press, New York, 1-282.
  • Spanos, G., & Wrolstad R.E. (1990). Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. Journal of Agricultural and Food Chemistry, 38(7):1565-1571.
  • Sulc, M., Lachman, J., Hejtmankova, A., & Orsak, M. (2005). Relationship between antiradical activity, polyphenolic antioxidants and free trans-resveratrol in grapes (Vitis vinifera L.). Horticultural Science, 32(4):154-162.
  • Uzun H.i., & Bayır, A. (2007). Bazı yabani asma (Vitis silvestris) tiplerine ait çekirdeklerin toplam fenolik madde içerikleri ve antioksidan aktivitelerinin belirlenmesi. V. Ulusal Bahçe Bitkileri Kongresi, Erzurum, 324-328.
  • Xu, C., Yagiz, Y., Zhao, L., Simonne, A., Lu, J., & Marshall, M.R. (2017). Fruit quality, nutraceutical and antimicrobial properties of 58 muscadine grape varieties (Vitis rotundifolia Michx.) grown in United States. Food Chemistry, 215:149-156.
  • Yang, J., Martinson, T.E., & Liu, R.H. (2009). Phytochemical profiles and antioxidant activities of wine grapes. Food Chemistry, 116:332-339.
  • Yilmaz, Y., Göksel, Z., Erdoğan, S.S., Öztürk, A., Atak, A., & Özer, C. (2015). Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera L.) cultivars (4 common and 18 registered or candidate for registration). Journal of Food Processing and Preservation, 39(6):1682-1691.
  • Zhu-mei, X., Zhen-wen, Z., Yu-feng, C., & Hua, L. (2010). The effect of vineyard cover Crop on main monomeric phenols of grape berry and wine in Vitis vinifera L. cv. Cabernet Sauvignon. Agricultural Sciences in China, 9, 3:440-448. Pennsylvania State University, Pennsylvania.
APA BAYIR YEĞİN A, uzun i (2018). Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. , 1 - 10.
Chicago BAYIR YEĞİN Arzu,uzun ibrahim Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. (2018): 1 - 10.
MLA BAYIR YEĞİN Arzu,uzun ibrahim Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. , 2018, ss.1 - 10.
AMA BAYIR YEĞİN A,uzun i Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. . 2018; 1 - 10.
Vancouver BAYIR YEĞİN A,uzun i Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. . 2018; 1 - 10.
IEEE BAYIR YEĞİN A,uzun i "Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri." , ss.1 - 10, 2018.
ISNAD BAYIR YEĞİN, Arzu - uzun, ibrahim. "Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri". (2018), 1-10.
APA BAYIR YEĞİN A, uzun i (2018). Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. Derim, 35(1), 1 - 10.
Chicago BAYIR YEĞİN Arzu,uzun ibrahim Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. Derim 35, no.1 (2018): 1 - 10.
MLA BAYIR YEĞİN Arzu,uzun ibrahim Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. Derim, vol.35, no.1, 2018, ss.1 - 10.
AMA BAYIR YEĞİN A,uzun i Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. Derim. 2018; 35(1): 1 - 10.
Vancouver BAYIR YEĞİN A,uzun i Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri. Derim. 2018; 35(1): 1 - 10.
IEEE BAYIR YEĞİN A,uzun i "Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri." Derim, 35, ss.1 - 10, 2018.
ISNAD BAYIR YEĞİN, Arzu - uzun, ibrahim. "Bazı üzüm genotiplerinin farklı kısımlarının fenolik madde ve antioksidan aktivite değişimleri". Derim 35/1 (2018), 1-10.