Yıl: 2019 Cilt: 17 Sayı: 1 Sayfa Aralığı: 1 - 19 Metin Dili: Türkçe İndeks Tarihi: 19-11-2019

ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI

Öz:
Sportif performans artışı sağlamanın yanında rehabilitasyon amaçlı yaygın olarak kullanılan elektriksel kas uyarım yöntemi ya da diğer adıyla elektromyostimülasyon (EMS) deri üzerinden kas ya da sinir bölgelerine elektrotlar aracılığıyla uygulanan elektriksel akımlarla kas kontraksiyonu elde etme ve bu yolla hızlı motor ünitelerin yavaş motor ünitelerle beraber senkronize katılımıyla antrene edilerek, fiziksel performansta fonksiyonel artışlar elde etme amaçlı kullanılan konvansiyonel olmayan bir egzersiz metodudur. Bu şekilde EMS’nin hem sinir dalları hem de kas liflerinde iyon hareketini tetikleyerek aksiyon potansiyeli oluşturması, motor ve duyusal nöral girdilerle spinal ve supraspinal merkezleri aktive etmesi ve ayrıca antrenman süreci sonrası hipertrofisiz kuvvet kazanımları ile ünilateral EMS sonucu kontrolateral kasta da kuvvet kazanımlarının ortaya çıkması EMS’nin nöromuskuler sisteme biyokimyasal, fizyolojik ve nöral etkileri olduğu düşüncesini desteklemektedir. Bu nedenle EMS’nin insan vücuduna etkileri altında yatan biyokimyasal, fizyolojik ve nöral mekanizmalarını incelemeye odaklanmış olan bu derlemede ilk olarak EMS’nin tarihsel gelişimine değinilmiş sonraki kısımda ise EMS’nin biyokimyasal, fizyolojik ve nöral mekanizmaları incelenmiştir. Bu çalışmanın amacı EMS’nin insan vücuduna etkileri altında yatan mekanizmaların ortaya konarak bu yolla sportif performans ve rehabilitasyon amaçlı kullanımını daha net ve daha bilimsel temellere dayanarak daha EMS uygulamalarının etkin kullanımına katkıda bulunmaktadır.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Spor Bilimleri

BIOCHEMICAL, PHYSIOLOGICAL AND NEURAL MECHANISMS OF ELECTRICAL MUSCLE STIMULATIONS

Öz:
Electrical muscle stimulation (EMS), which is widely used for rehabilitation purposes and sporty performance enhancement, is used to obtain muscular contractions by means of electrical currents applied to the muscle or nerve regions via the skin, is an unconventional exercise method that is used to obtain functional gains in physical performance. In this way, EMS generates action potaentials by triggering ion movements in both nerve branches and muscle fibers, activates spinal and supraspinal centers by motor and sensory neural inputs, as well as the generation of force gains after unilateral EMS training periods resultant contralateral homologues muscle strength, these factors support biochemical, physiological and neural effects on neuromuscular system. This review focuses on the biochemical, physiological and neural mechanisms underlying EMS's effects on the human body. The historical development of EMS discussed in the first part of the review and biochemical, physiological and neural mechanisms of EMS examined in the next section. The purpose of this study was to contribute to the effective use of EMS applications based on clearer and more scientific bases for the purposes of sportive performance and rehabilitation by examining underlying mechanisms of human body.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Spor Bilimleri
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aagaard, P., Simonsen, E.B., Andersen, J.L., Magnusson, P., Dyhre-Poulsen, P., (2002). Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses, J. Appl. Physiol., 92 (6), 2309-2318.
  • Adams, V. (2018). Electromyostimulation to fight atrophy and to build muscle: Facts and numbers. Journal of cachexia, sarcopenia and muscle, 9(4), 631-634.
  • Ashley, Z., Sutherland, H., Lanmuller, H., Unger, E., Li, F., Mayr, W., Kern, H., Jarvis, J.C., Salmons, S., (2005). Determination of the chronaxie and rheobase of denervated limb muscles in conscious rabbits, Artif. Organs, 29 (3), 212-215.
  • Babault, N., Cometti, G., Bernardin, M., Pousson, M., Chatard, J.C., (2007). Effects of electromyostimulation training on muscle strength and power of elite rugby players, J. Strength Cond. Res., 21 (2), 431-437.
  • Babault, N., Cometti, C., Maffiluetti, N.A., Deley, G., (2011). Does electrical stimulation enhance post-exercise recovery?, Eur. J. Appl. Physiol., 111 (10), 2501-2507.
  • Bahşi, İ., Orhan, M., Çetkin, M., Turhan, B., Sayın, S. (2017). Anatomy of cranial nerves in the first Turkish illustrated anatomy manuscript, Childs Nerv Syst, 33 (11), 1855-1862.
  • Barr, R.C., (2015): Basic electrophysiology, In: Biomedical Engineering Fundamentals, J.D. Bronzino, D.R. Peterson (Eds.), 4th Ed., CRC Press, Taylor & Francis Group, FL, USA, 38-1.
  • Bax, L., Staes, F., Verhagen, A., (2005). Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials, Sports Med., 35 (3), 191-212.
  • Beaudreau, S.A., Finger, S., (2006). Medical electricity and madness in the 18th century: The legacies of Benjamin Franklin and Jan Ingenhousz, Perspect. Biol. Med., 49 (3), 333.
  • Bergquist, A.J., Clair, J.M., Lagerquist, O., Mang, C.S., Okuma, Y., Collins, D.F., (2011). Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley, Eur. J. Appl. Physiol., 111 (10), 2409-26.
  • Billot, M., Martin, A., Paizis, C., Cometti, C., Babault, N., (2010). Effects of an electrostimulation training program on strength, jumping, and kicking capacities in soccer players, J. Strength Cond. Res., 24 (5), 1407-1413.
  • Binder-Macleod, S.A., Halden, E.E., Jungles, K.A., (1995). Effects of stimulation intensity on the physiological responses of human motor units, Med. Sci. Sports Exerc., 27 (4), 556-565.
  • Blickenstorfer, A., Kleiser, R., Keller, T., Keisker, B., Meyer, M., Riener, R., Kollias, S., (2009). Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI, Hum. Brain Mapp., 30 (3), 963-975.
  • Bresadola, M., (1998). Medicine and science in the life of Luigi Galvani (1737-1798), Brain Res. Bull., 46 (5), 372.
  • Brocherie, F., Babault, N., Cometti, G., Maffiuletti, N., Chatard, J.C., (2005). Electrostimulation training effects on the physical performance of ice hockey players, Med. Sci. Sports Exerc., 37 (3), 455-60.
  • Brooke, J.D., Cheng, J., Collins, D.F., McIlroy, W.E., Misiaszek, J.E., Staines, W.R., (1997). Sensori-sensory afferent conditioning with leg movement: Gain control in spinal reflex and ascending paths, Prog. Neurobiol., 51 (4), 393-421.
  • Brunel, N., van Rossum, M.C., (2007). Lapicque's 1907 paper: From frogs to integrate-and-fire, Biol. Cybern., 97 (5-6), 337-339.
  • Burns, W.E., (2003). Science in The Enlightenment: An Encyclopedia, ABC-CLIO, California, USA, 107.
  • Cardinale, M., Newton, R., Kazunori, N., (2010). Strength and Conditioning: Biological Principles and Practical Applications, Wiley-Blackwell, NJ, USA, 193-197.
  • Cattagni, T., Lepers, R., & Maffiuletti, N.A., (2018). Effects of neuromuscular electrical stimulation on contralateral quadriceps function. J Electromyogr Kinesiol., 38 (2018), 111-118.
  • Clark, R.B., (2005). Anatomy and Physiology: Understanding The Human Body, Jones Barlett Publishers, MA, USA, 173.
  • Clementy, J., Rouves, D., Garrigue, S., Barold, S.S., Jaïs, P., Haïssaguerre, M., (2002). High impedance leads and safety margin. Electrical considerations based on a simplified expression of the ‘paradigm’, Europace, 4 (2), 121-128.
  • Collins, D.F., Burke, D., Gandevia, S.C., (2001). Large involuntary forces consistent with plateau-like behavior of human motoneurons, J. Neurosci., 21 (11), 4059-4065.
  • Çetkin, M., Orhan, M., Bahşi, İ., Turhan, B. (2017). Anatomy of spinal nerves in the first Turkish illustrated anatomy handwritten textbook, Childs Nerv Syst, 33 (2), 205-209.
  • de Boulogne, G.B.D., (1990). The Mechanism of Human Facial Expression (Studies in Emotion and Social Interaction), R.A. Cuthbertson (Ed.&Translate), Cambridge Uni. Press, Cambridge, 9-10.
  • Dehail, P., Duclos, C., Barat, M., (2008). Electrical stimulation and muscle strengthening, Ann. Readapt. Med. Phys., 51 (6), 441-451.
  • Deley, G., Cometti, C., Fatnassi, A., Paizis, C., & Babault, N. (2011). Effects of combined electromyostimulation and gymnastics training in prepubertal girls. The Journal of Strength & Conditioning Research, 25(2), 520-526.
  • Delitto, A., Rose, S.J., McKowen, J.M., Lehman, R.C., Thomas, J.A., Shively, R.A., (1988). Electrical stimulation versus voluntary exercise in strengthening thigh musculature after anterior cruciate ligament surgery, Phys. Ther., 68 (5), 660-663.
  • Delitto, A., Snyder-Mackler, L., (1990). Two theories of muscle strength augmentation using percutaneous electrical stimulation, Phys. Ther.,70 (3), 158-164.
  • Delitto, A., (2002). "Russian electrical stimulation": Putting this perspective into perspective, Phys. Ther., 82 (10), 1017-8. Duclay, J., Martin, A., (2005). Evoked H-reflex and V-wave responses during maximal isometric, concentric, and eccentric muscle contraction, J. Neurophysiol., 94 (5), 3555-3562. Dudley, G.A., Stevenson, S.W., (2008). Use of electrical stimulation in strength and power training, In: Strength and Power in Sport, 2nd Ed., P.V. Komi (Ed.), Blackwell Science Ltd., Oxford, UK, 426-437.
  • Enoka, R.M., (2002). Activation order of motor axons in electrically evoked contractions, Muscle Nerve, 25 (6), 763-764.
  • Farthing, J.P., (2009). Cross-education of strength depends on limb dominance: Implications for theory and application, Exerc. Sport. Sci. Rev., 37 (4), 179-187.
  • Forehand, C.J., (2009). The action potential, synaptic transmission, and maintenance of nerve function, In: Medical Physiology: Principles for Clinical Medicine, R. Rhoades, D.R. Bell (Eds.), 3rd Ed., Wolters Kluwer/Lippincott Williams&Wilkins, Baltimore, USA, 41,45,46.
  • Frontera, W.R., (2008). Part 1: Epidemiology and pathology, Section 1: Epidemiology of sports injuries: Implications for rehabilitation, In: Rehabilitation of Sports Injuries-Scientific Basis: Olympic Encyclopaedia of Sports Medicine, W.R. Frontera (Ed.), Wiley Publisher, Massachusetts, USA, 8.
  • Fuentes, I., Cobos, A.R., Segade, L.A.D., (1998). Muscle fibre types and their distribution in the biceps and triceps brachii of the rat and rabbit, J. Anat., 192 (2), 203-210.
  • Garhammer, J., (1983). An introduction to the use of electrical muscle stimulation with athletes, Natl. Strength & Cond. Assoc. J., 5 (4), 44-45.
  • Geddes, L.A., Hoff, H.E., (1971). The discovery of bioelectricity and current electricity, the Galvani-Volta controversy, IEEE Spectrum, 8 (12), 38-46.
  • Gondin, J., Cozzone, P.J., Bendahan, D., (2011a). Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes?, Eur. J. Appl. Physiol., 111 (10), 2473-87.
  • Gondin, J., Brocca, L., Bellinzona, E., D’Antona, G., Maffiuletti, N.A., Miotti, D., Pellegrino, M.A., Bottinelli, R., (2011b). Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: A functional and proteomic analysis, J. Appl. Physiol., 110 (2), 433-450.
  • Govus, A. D., Andersson, E. P., Shannon, O. M., Provis, H., Karlsson, M., & McGawley, K. (2018). Commercially available compression garments or electrical stimulation do not enhance recovery following a sprint competition in elite cross-country skiers. European Journal of Sport Science, 1-10.
  • Gregory, C.M., Bickel, C.S., (2005). Recruitment patterns in human skeletal muscle during electrical stimulation, Phys. Ther., 85 (4), 358-364.
  • Hainaut, K, Duchateau, J., (1992). Neuromuscular electrical stimulation and voluntary exercise, Sports Med., 14 (2), 100-113.
  • Hardy, S.G.P., Spalding, T.B., Liu, H., Nick, T.G., Pearson, R.H., Hayes, A.V., Stokic, D.S., (2002). The Effect of transcutaneous electrical stimulation on spinal motor neuron excitability in people without known neuromuscular diseases: The roles of stimulus intensity and location, Phys. Ther., 82 (4), 354-363.
  • Heidland, A., Fazeli, G., Klassen, A., Sebekova, K., Hennemann, H., Bahner, U., Di Iorio, B., (2013). Neuromuscular electrostimulation techniques: Historical aspects and current possibilities in treatment of pain and muscle waisting, Clin. Nephrol., 79 (1), 12-23.
  • Henneman, E., Somjen, G., Carpenter, D.O., (1965). Functional significance of cell size in spinal motoneurons, J. Neurophysiol., 28 (3), 560-580.
  • Hennessy, E., Coughlan, G., Caulfield, B., Crowe, L., Perumal, S.D., McDonnell, T.J., (2010). An investigation into the acute effects of electrical muscle stimulation on cardiopulmonary function in a chronic obstructive pulmonary disease patient - A pilot case study. Presented at: 1st Annual Conference of the International Functional Electrical Stimulation Society (UK and Ireland Chapter), University of Salford, 15-16 April, Manchester, UK.
  • Herrero, A.J., Martin, J., Martin, T., Abadia, O., Fernandez, B., Garcia-Lopez, D., (2010). Short-term effect of strength training with and without superimposed electrical stimulation on muscle strength and anaerobic performance. A randomized controlled trial. Part I, J. Strength Cond. Res., 24 (6), 1609-1615.
  • Holcomb, W.R., (2005). Is neuromuscular electrical stimulation an effective alternative to resistance training?, Strength & Cond. J., 27 (3), 76-79.
  • Holsheimer, J., Dijkstra, E.A., Demeulemeester, H., Nuttin, B., (2000). Chronaxie calculated from current-duration and voltage-duration data, J. Neurosci. Methods, 97 (1), 45-50.
  • Hortobagyi, T., Maffiuletti, N.A., (2011). Neural adaptations to electrical stimulation strength training, Eur. J. Appl. Physiol., 111 (10), 2439-49.
  • Imoto, A. M., Peccin, S., Almeida, G. J. M., Saconato, H., & Atallah, Á. N. (2011). Effectiveness of electrical stimulation on rehabilitation after ligament and meniscal injuries: A systematic review. Sao Paulo Medical Journal, 129(6), 414-423.
  • Irnich, W., (2002). Georges Weiss' fundamental law of electrostimulation is 100 years old, Pacing Clin. Electrophysiol., 25 (2), 245-8.
  • W., (2010). The terms "chronaxie" and "rheobase" are 100 years old, Pacing Clin. Electrophysiol., 33 (4), 491-6.
  • Jubeau, M., Gondin, J., Martin, A., Sartorio, A., Maffiuletti N.A., (2007). Random motor unit activation by electrostimulation, Int. J. Sports Med., 28 (11), 901-4.
  • Kale, M., Kaçoğlu, C., Gürol, B., (2014). Elektromyostimülasyon antrenmanlarının nöral adaptasyon ve sportif performans üzerine etkileri, Spor Bilimleri Dergisi, 25 (3), 142-158.
  • Kemmler, W., von Stengel, S., Schwarz, J., Mayhew, J.L., (2012). Effect of whole-body electromyostimulation on energy expenditure during exercise, J. Strength Cond. Res., 26 (1), 240-5.
  • Kemmler, W., von Stengel, S., (2012). Alternative exercise technologies to fight against sarcopenia at old age: A series of studies and review, J. Aging Res., Vol.2012, 1-8.
  • Khurana, I., (2005). Textbook of Medical Physiology, Elsevier, UP, India, 66-67.
  • Kılıç, T., & Ugurlu, A. (2018). Investigation of the Effect of Six Weeks Electro Muscle Stimulation Training on Physical Changes in the Sedentary Men and Women. Journal of Education and Training Studies, 6(9), 21-25.
  • Knaflitz, M., Merletti, R., De Luca, C.J., (1990). Inference of motor unit recruitment order in voluntary and electrically elicited contractions, J. Appl. Physiol., 68 (4), 1657-1667.
  • Knight, K.L., Draper, D.O., (2012). Therapeutic Modalities: The Art and Science, 2nd Ed., Lippincott Williams & Wilkins, Baltimore, USA, 323-324.
  • Knikou, M., (2008). The H-reflex as a probe: Pathways and pitfalls, J. Neurosci. Methods., 171 (1), 1-12.
  • Lindquist, A.R.R., Prado, C.L., Barros, R.M.L., Mattioli, R., Costa, P.H.L., Salvini, T.F., (2007). Gait training combining partial body-weight support a treadmill, and functional electrical stimulation: Effects on poststroke gait, Phys. Ther., 87 (9), 1144-1154.
  • Lloyd, T., Domenico, G.G., Strauss, G.R., Singer, K., (1986). A review of the use of electro-motor stimulation in human muscles, Aust. J. Physiother., 32 (1), 18-30.
  • Loeb, G.E., (2005). Galvani's delayed legacy: Neuromuscular electrical stimulation, Expert Rev. Med. Devices, 2 (4), 379-81.
  • MacIntosh, B.R., Gardiner, P.F., McComas, A.J., (2006). Skeletal Muscle: Form and Function, Human Kinetics, IL, USA, 130,131.
  • Maffiuletti, N.A., Cometti, G., Amiridis, I.G., Martin, A., Pousson, M., Chatard, J.C., (2000). The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability, Int. J. Sports Med., 21 (6), 437-43.
  • Maffiuletti, N.A., Pensini, M., Martin, A., (2002a). Activation of human plantar flexor muscles increases after electromyostimulation training, J. Appl. Physiol., 92 (4), 1383-1392.
  • Maffiuletti, N.A., Dugnani, S., Folz, M., Di Pierno, E., Mauro, F., (2002b). Effect of combined electrostimulation and plyometric training on vertical jump height, Med. Sci. Sports Exerc, 34 (10), 1638-1644.
  • Maffiuletti, N.A., Zory, R., Miotti, D., Pellegrino, M.A., Jubeau, M., Bottinelli, R., (2006). Neuromuscular adaptations to electrostimulation resistance training, Am. J. Phys. Med. Rehabil., 85 (2), 167-75.
  • Maffiuletti, N.A., Bramanti, J., Jubeau, M., Bizzini, M., Deley, G., Cometti, G., (2009). Feasibility and efficacy of progressive electrostimulation strength training for competitive tennis players, J. Strength. Cond. Res., 23 (2), 677-682.
  • Maffiuletti, N.A., (2010). Physiological and methodological considerations for the use of neuromuscular electrical stimulation, Eur. J. Appl. Physiol., 110 (2), 223-234.
  • Malatesta, D., Cattaneo, F., Dugnani, S., Maffiuletti, N.A., (2003). Effects of electromyostimulation training and volleyball practice on jumping ability, J. Strength Cond. Res., 17 (3), 573-579.
  • Malmivuo, J., Plonsey, R., (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, NY, USA, 13.
  • Marqueste, T., Messan, F., Hug, F., Laurin, J., Dousset, E., Grelot, L., Decherchi, P., (2010). Effect of repetitive biphasic muscle electrostimulation training on vertical jump performances in female volleyball players, Int. J. Sport Health Sci., 8 (0), 50-55.
  • Merrill, D.R., Bikson, M., Jefferys, J.G., (2005). Electrical stimulation of excitable tissue: Design of efficacious and safe protocols, J. Neurosci. Methods, 141 (2),184.
  • Minetto, M. A., Botter, A., Gamerro, G., Varvello, I., Massazza, G., Bellomo, R. G., Maffiuletti, N.A., Saggini, R., (2018). Contralateral effect of short-duration unilateral neuromuscular electrical stimulation and focal vibration in healthy subjects. Eur J Phys Rehabil Med, Online First.
  • Morrissey, M. C. (1988). Electromyostimulation from a clinical perspective. Sports medicine, 6(1), 29-41.
  • Mosole, S., Zampieri, S., Furlan, S., Carraro, U., Löefler, S., Kern, H., Volpe, P., Nori, A., (2018). Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People, Gerontology and Geriatric Medicine, 4 (11), 1-11.
  • Nanda, K. B., (2008). Electrotherapy Simplified, Jaypee Brothers Medical Publishers, New Delhi, India, 112-114.
  • Paillard, T., (2008). Combined application of neuromuscular electrical stimulation and voluntary muscular contractions, Sports Med., 38 (2), 161-177.
  • Papaiordanidou, M., Guiraud, D., Varray, A., (2010). Kinetics of neuromuscular changes during low-frequency electrical stimulation, Muscle Nerve, 41(1), 54-62. Parent, A., (2005). Duchenne De Boulogne: A pioneer in neurology and medical photography, Can. J. Neurol. Sci., 32 (3), 369-77.
  • Peckham, P.H., Knutson, J.S., (2005). Functional electrical stimulation for neuromuscular applications, Annu. Rev. Biomed. Eng., (7), 327-360.
  • Pensini, M., Martin, A., (2004). Effect of voluntary contraction intensity on the H-reflex and V-wave responses, Neurosci. Lett., 367 (3), 369-374.
  • Pichon, F., Chatard, J.C., Martin, A., Cometti, G., (1995). Electrical stimulation and swimming performance, Med. Sci. Sports. Exerc., 27 (12), 1671-1676.
  • Pierrot-Deseilligny, E., Burke, D., (2005). The Circuitry Of The Human Spinal Cord: Its Role In Motor Control And Movement Disorders, Cambridge University Press., Cambridge, UK, 2.
  • Plotnik, R., Kouyoumdjian, H., (2013). Introduction to Psychology, 10th Ed., Wadsworth/Cengage Learning, Belmont, USA, 52.
  • Press, J.M., Bergfeld, D.A., (2007). Physical modalities, In: Clinical Sports Medicine: Medical Management and Rehabilitation, W.R. Frontera (Ed.), Elsevier Inc., Philadelphia, USA, 214-215.
  • Ratamess, N.A., (2008). Adaptation to anaerobic training programs, In: Essentials of Strength Training and Conditioning/National Strength and Conditioning Association, 3rd Ed., T.R. Baechle, W.E. Roger, (Eds.), Human Kinetics, IL, USA, 97.
  • Reilly, J.P., (1992). Electrical Stimulation and Electropathology, Cambridge University Press, NY, USA, 145.
  • Requena, S.B., Padial, P.P., González-Badillo, J.J., (2005). Percutaneous electrical stimulation in strength training: An update, J. Strength Cond. Res., 19 (2), 438-448.
  • Russ, D.W., Clark, B.C., Krause, J., Hagerman, F.C., (2012). Development of a neuromuscular electrical stimulation protocol for sprint training, Med. Sci. Sports Exerc., 44 (9), 1810-1819.
  • Schechter, D.C., (1971). Origins of electrotherapy, Part I., NY State J Med., 71: 997-1008.
  • Schieppati, M., (1987). The Hoffmann reflex: A means of assessing spinal reflex excitability and its descending control in man, Prog. Neurobiol., 28 (4), 345-376.
  • Schink, K., Herrmann, H.J., Schwappacher, R., Meyer, J., Orlemann, T., Waldmann, E., ... & Beckmann, M. W. (2018). Effects of whole-body electromyostimulation combined with individualized nutritional support on body composition in patients with advanced cancer: A controlled pilot trial. BMC cancer, 18(1), 886.
  • Seyri, K., Maffiuletti, N., (2011). Effect of electromyostimulation training on muscle strength and sports performance, Strength Cond. J., 33 (1), 70-75.
  • Sheffler, L.R., Chae, J., (2007). Neuromuscular electrical stimulation in neurorehabilitation, Muscle Nerve, 35 (5), 562-590.
  • Sherwood, L., (2006). Principles of neural and hormonal communication, In: Fundamentals of Physiology: A Human Perspective, 3rd Ed., Thomson Brooks/Cole, Southbank, Australia, 83.
  • Siff, M., (1990). Applications of electrostimulation in physical conditioning: A review, J. Strength Cond. Res., 4 (1), 20-26.
  • Sinacore, D.R., Delitto, A., King, D.S., Roset, S.J., (1990). Type II fiber activation with electrical stimulation: A preliminary-report, Phys. Ther., 70 (7), 416-422.
  • Singer, K.P., (1986). The influence of unilateral electrical muscle stimulation on motor unit activity patterns in atrophic human quadriceps, Aust. J. Physiother., 32 (1), 31-37.
  • Singh, J., (2005). Textbook of Electrotherapy, Jaypee Digital, New Delhi, India, 1-68.
  • Singh, J., (2012). Textbook of Electrotherapy, 2nd Ed., Jaypee Digital, New Delhi, India, 1. Sircar, S., (2008). Principles of Medical Physiology, Thieme, Stuttgart, Germany, 80.
  • Smith, C.U.M., (2007). Brain and mind in the "long" eighteenth century, In: Brain, Mind and Medicine: Essays in Eighteenth-Century Neuroscience, H.A. Whitaker, C.U.M. Smith, S. Finger (Eds.), Springer, MI, USA, 17.
  • Smith, J.C., Motl, R.W., (2005). Electromyographic indices of neuromuscular reflexes, Int. J. Sports Psychol., 3 (3), 322-337.
  • Strauss, G.R., Domenico, D.D., (1986). Torque production in human upper and lower limb muscles with voluntary and electrically stimulated contractions, Aust. J. Physiother., 32 (1), 38-49
  • Tasaki, I., (1939). Electric stimulation and the excitatory process in the nerve fiber, Am. J. Physiol., 125, 380-395.
  • Thomas, C.K., Nelson, G., Than, L., Zijdewind, I., (2002). Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles, Muscle Nerve, 25 (6), 797-804.
  • Treacy, C., (2013). SSS hücreleri ve aralarındaki iletişim, (Çeviri: D.F. Baş), In: Nörolojik Bilimler Hemşireliği Kanıta Dayalı Uygulamalar, S. Woodward, A. Mestecky (Eds.), (Çeviri: M.A. Topçuoğlu, Z. Durna, A. Karadakovan), Nobel Tıp Kitap Evi, İstanbul, Turkey, 9,11-12.
  • Trimble, M.H., Enoka, R.M., (1991). Mechanisms underlying the training effects associated with neuromuscular electrical stimulation, Phys. Ther., 71 (4), 273-280.
  • Upton, A.R., McComas, A.J., Sica, R.E., (1971). Potentiation of “late” responses evoked in muscles during effort, J. Neurol. Neurosurg. Psychiatry., 34 (6), 699-711.
  • Vanderthommen, M., Duchateau, J., (2007). Electrical stimulation as a modality to improve performance of the neuromuscular system, Exerc. Sport Sci. Rev., 35 (4), 180-185.
  • Ward, A.R., Shkuratova, N., (2002). Russian electrical stimulation: The early experiments, Phys. Ther., 82 (10), 1019-1030.
  • Wax, B., Kavazis, A. N., & Brown, S. P. (2013). Effects of supplemental carbohydrate ingestion during superimposed electromyostimulation exercise in elite weightlifters. The Journal of Strength & Conditioning Research, 27(11), 3084-3090.
  • Zatsiorsky, V.M., Kraemer, W.J., (2006). Science and Practice of Strength Training, 2nd Ed., Human Kinetics, IL, USA, 62,132-133.
  • Zehr, P.E., (2002). Considerations for use of the Hoffmann reflex in exercise studies, Eur. J. Appl. Physiol., 86 (6), 455-468.
  • Zhou, S., Oakman, A., & Davie, A. J. (2002). Effects of unilateral voluntary and electromyostimulation training on muscular strength on the contralateral limb. Hong Kong Journal of Sports Medicine and Sports Science, 14, 1.
APA KAÇOĞLU C, Kale M (2019). ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. , 1 - 19.
Chicago KAÇOĞLU Celil,Kale Mehmet ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. (2019): 1 - 19.
MLA KAÇOĞLU Celil,Kale Mehmet ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. , 2019, ss.1 - 19.
AMA KAÇOĞLU C,Kale M ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. . 2019; 1 - 19.
Vancouver KAÇOĞLU C,Kale M ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. . 2019; 1 - 19.
IEEE KAÇOĞLU C,Kale M "ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI." , ss.1 - 19, 2019.
ISNAD KAÇOĞLU, Celil - Kale, Mehmet. "ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI". (2019), 1-19.
APA KAÇOĞLU C, Kale M (2019). ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. SPORMETRE BEDEN EĞİTİMİ VE SPOR BİLİMLERİ DERGİSİ, 17(1), 1 - 19.
Chicago KAÇOĞLU Celil,Kale Mehmet ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. SPORMETRE BEDEN EĞİTİMİ VE SPOR BİLİMLERİ DERGİSİ 17, no.1 (2019): 1 - 19.
MLA KAÇOĞLU Celil,Kale Mehmet ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. SPORMETRE BEDEN EĞİTİMİ VE SPOR BİLİMLERİ DERGİSİ, vol.17, no.1, 2019, ss.1 - 19.
AMA KAÇOĞLU C,Kale M ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. SPORMETRE BEDEN EĞİTİMİ VE SPOR BİLİMLERİ DERGİSİ. 2019; 17(1): 1 - 19.
Vancouver KAÇOĞLU C,Kale M ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI. SPORMETRE BEDEN EĞİTİMİ VE SPOR BİLİMLERİ DERGİSİ. 2019; 17(1): 1 - 19.
IEEE KAÇOĞLU C,Kale M "ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI." SPORMETRE BEDEN EĞİTİMİ VE SPOR BİLİMLERİ DERGİSİ, 17, ss.1 - 19, 2019.
ISNAD KAÇOĞLU, Celil - Kale, Mehmet. "ELEKTRİKSEL KAS UYARIMLARININ BİYOKİMYASAL, FİZYOLOJİK VE NÖRAL MEKANİZMASI". SPORMETRE BEDEN EĞİTİMİ VE SPOR BİLİMLERİ DERGİSİ 17/1 (2019), 1-19.