SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ

Yıl: 2019 Cilt: 0 Sayı: 80 Sayfa Aralığı: 263 - 301 Metin Dili: Türkçe İndeks Tarihi: 01-04-2020

SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ

Öz:
Bu araştırmanın amacı, fen bilgisi öğretmen adaylarının sosyobilimsel konulardaöğrenciyi anlama bilgilerinin gelişimine argümantasyona dayalı öğrenme uygulamalarınınetkisini incelemektir. Araştırmanın örneklemini, 2017-2018 eğitim-öğretim yılı güzdöneminde bir devlet üniversitesinin fen bilimleri öğretmenliği programı 4. sınıfındaöğrenim gören toplam 60 (deney, n=30, kontrol, n=30) öğretmen adayı oluşturmuştur.Araştırma, nicel ve nitel yöntemlerin bir arada kullanıldığı karma yönteme dayalı olaraksürdürülmüş ve araştırmada öntest-sontest kontrol gruplu deneysel desen kullanılmıştır.Araştırmanın uygulama süreci haftada 2 ders saati olmak üzere 8 haftalık bir süreci içermektedir.Araştırma fen bilgisi öğretmenliği lisans derslerinden Özel Öğretim Yöntemleri-II dersinin uygulama saatlerinde yürütülmüştür. Bu ders saatlerinde deney grubundakiöğretmen adayları sosyobilimsel konularda öğrenciyi anlama bilgisine yönelik hazırlanmışargümantasyon senaryoları üzerinde çalışmışlardır. Kontrol grubundaki öğretmenadayları ise ders sunumları ve sınıf içi aktiviteler yoluyla sosyobilimsel konulara ilişkinbilgilerini yapılandırmışlardır. Araştırmanın verileri, “Sosyobilimsel Konularda ÖğrenciyiAnlama Yeterliliği Algısı (SBK-ÖAYA) Ölçeği", “Sosyobilimsel Konularda Öğrenciyi Anlama Bilgisi (SBK-ÖAB) Temsil Formu” ve “Yapılandırılmamış Görüşme Formu” iletoplanmıştır. Araştırmanın nicel verileri karışık ölçümler için iki faktörlü ANOVA testikullanılarak analiz edilmiştir. Nitel veriler ise içerik analizi yoluyla çözümlenmiştir.Araştırmanın nicel analiz bulguları argümantasyona dayalı öğrenme uygulamalarınınfen bilimleri öğretmen adaylarının sosyobilimsel konularda öğrenciyi anlama bilgilerinigeliştirmede mevcut öğretim yaklaşımına göre daha etkili olduğunu göstermiştir. Deneygrubu öğretmen adaylarının nicel bulgularını desteklemek amacıyla elde edilen nitel bulgular,argümantasyona dayalı öğrenme uygulamalarının öğretmen adaylarının sosyobilimselkonulardaki öğrenciyi anlama bilgisi anlayışlarını olumlu yönde etkilediği ve buöğretmen mesleki bilgi alanına ilişkin farkındalık oluşturmalarına önemli katkılar sağladığınıgöstermiştir.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Matematik

The Effect of Argument-Based Learning Applications on the Development of Preservice Science Teachers’ Student Comprehension Knowledge About Socioscientific Issues

Öz:
The purpose of this study was to investigate the effect of argument-based learning applications on the development of preservice science teachers’ student comprehension knowledge about socioscientific issues. The sample of the study consisted of 60 senior preservice science teachers (control group, n=30; experimental group, n=30) in a state university in the fall semester of 2017-2018 academic year. The research was carried out based on the mixed method, where both quantitative and qualitative methods were used. The design of study was a quasi-experimental design in which control and experimetanl grup were randomly assinged. The application process of the research consists of 8 weeks, 2 hours per week. The research was conducted during Special Teaching Methods-II course, one of the undergraduate courses of science teacher preparation program. During process, preservice science teachers in the experimental group worked on argumentation scenarios that were prepared for the understanding of student understanding about socioscientific issues. On the other hand, preservice science teachers in the control group worked on socioscientific issues through lecture presentations and classroom activities. The data of the study were collected with “Knowledge of Student Understanding Efficacy Scale (Socioscientific Issues)”,“Knowledge of Student Understanding Representation Form (Socioscientific Issues)”and ‘Unstructured Interview Form’. The ANOVA was used to analyze the quantitative data. For qualitative data, content anaysis were used. The results of the study indicated that argument-based learning practices were more effective than the current teaching approach for improving student understanding about socioscientific issues. The results obtained from the analysis of qualitative data showed that the argumentation based learning practices has positive effect on student understanding knowledge about socioscientific issues and contributed to the awareness of this professional knowledge field of teaching.
Anahtar Kelime:

Konular: Eğitim, Eğitim Araştırmaları Matematik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abell, S.K. (2007). Research on science teacher knowledge. In S.K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp.1105- 1149). Mahwah, NJ: Lawrence Erlbaum.
  • Acar, Ö., Patton, B. R., & White, A. L. (2015). Prospective secondary science teachers' argumentation skills and the interaction of these skills with their conceptual knowledge. Australian Journal of Teacher Education, 40(9), 132-156.
  • Anderson, D. & Clark, M. (2012). Development of syntactic subject matter knowledge and pedagogical content knowledge for science by a generalist elementary teacher. Teachers and Teaching: Theory and Practice, 18(3), 315–330.
  • Avaamiodou, L. & Zembal-Saul, C. (2005). Giving priority to evidence in science teaching: A first-year elementary teacher’s specialised practices and knowledge. Journal of Research in Science Teaching, 42, 965-968.
  • Aydeniz, M. & Dogan, A. (2016). Exploring the impact of argumentation on pre-service science teachers’ conceptual understanding of chemical equilibrium. Chemistry Education Research and Practice, 17, 111–119.
  • Bailie, A. L. (2017). Developing preservice secondary science teachers’ pedagogical content knowledge through subject area methods courses: A content analysis. Journal of Science Teacher Education, 28(7), 631–649.
  • Barker, H. L. (2019). The influence of argumentative discourse on pre-service teachers' alternative conceptions of photosynthesis and cellular respiration. Middle Tennessee State University, ProQuest Dissertations Publishing.
  • Berland, L. K. & Reiser, B. J. (2011). How classroom communities make sense of the practice of scientific argumentation. Science Education, 95(2), 191–216.
  • Berry, A., Depaepe, F., & van Driel, J. H. (2016). Pedagogical content knowledge in teacher education. In J. Loughran & M. L. Hamilton (Eds.), International handbook of teacher education (pp. 347–386). Singapore: Springer Singapore.
  • Bilgin, N. (2006). Sosyal bilimlerde içerik analizi teknikler ve örnek çalışmalar. (2. Baskı). Ankara: Siyasal Kitabevi.
  • Bossér, U., Lundin, M., Lindahl, M., & Linder, C. (2015). Challenges faced by teachers implementing socio-scientific issues as core elements in their classroom practices. European Journal of Science and Mathematics Education, 3(2), 159-176.
  • Barendsen, E. & Henze, I. (2017). Relating teacher PCK and teacher practice using classroom observation. Research in Science Education. https://doi.org/10.1007/ s11165-017-9637-z.
  • Burek, K. & Zeidler, D. L. (2015). Seeing the forest for the trees! Conservation and activism through socioscientific issues. In M.P. Mueller & D.J. Tippins (Eds.) EcoJustice, citizen science and youth activism: Situated tensions for science education (pp 425-442). Dordrecht: Springer International Press.
  • Büyüköztürk, Ş., Çakmak, E., Akgün, Ö., Karadeniz, Ş., & Demirel, F.(2010). Bilimsel araştırma yöntemleri (5. Baskı). Ankara: Pegem Akademi Yayınları.
  • Capobianco, B. M. (2007). Science teacher’ attempts at integrating feminist pedagogy through collaborative action research. Journal of Research in Science Teaching, 44(1), 1-32.
  • Christensen, B. L., Johnson, R. B., & Turner, L. (2014). Research methods, design, and analysis, pearson new ınternational edition. (11th ed). Great Britain: Pearson Education Limited.
  • Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: An integrative model for teacher preparation. Journal of Teacher Education, 44(4), 263–272.
  • Cook, J., Bedford, D., & Mandia, S. (2014). Raising climate literacy through addressing misinformation: Case studies in agnotology-based learning. Journal of Geoscience Education, 62, 296–306.
  • Donnelly, D. F. & Hume, A. (2015). Using collaborative technology to enhance pre- service teachers’ pedagogical content knowledge in Science. Research in Science & Technological Education, 33(1), 61-87.
  • De Jong, O. & van Driel, J. (2004). Exploring the development of student teachers’ PCK of the multiple meanings of chemistry topics. International Journal of Science and Mathematics Education, 2, 277–491.
  • Demirel, R. (2015). The effect of individual and group argumentation on student academic achievement in force and movement issues. Journal of Theory and Practice in Education (JPTE), 11(3), 916–48.
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.
  • Ekborg, M., Ottander, C., Silfver, E., & Simon, S. (2013). Teachers’ experience of working with socio-scientific issues: A large scale and in depth study. Research in Science Education, 43(2), 599-617.
  • Evagorou, M. (2011). Discussing a socioscientific issue in a primary school classroom: The case of using a technology-supported environment in formal and nonformal settings. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom. Teaching, learning and research (pp. 133–159). New York, NY: Springer.
  • Evagorou, M. (2015). Elementary school students’ emotions when exploring an authentic socio-scientific issue through the use of models. Science Education International, 26(2), 240-259.
  • Evagorou, M., Guven, D., & Mugaloglu, E. (2014). Preparing elementary and secondary pre-service teachers for everyday science. Science Education International, 25(1), 68-77.
  • Evagorou, M. & Puig Mauriz, B. (2017). Engaging elementary school pre-service teachers in modeling a socioscientific issue as a way to help them appreciate the social aspects of science. International Journal of Education in Mathematics, Science and Technology, 5(2), 113-123.
  • Friedrichsen, P., Van Driel, J. H., & Abell, S. K. (2011). Taking a closer look at science teachingorientations. Science Education, 95, 358–376.
  • Geddis, A. N. (1993). Transforming subject-matter knowledge: The role of pedagogical content knowledge in learning to reflect on teaching. International Journal of Science Education, 15, 673–683.
  • Gess-Newsome, L. & Lederman, N. G. (1993). Preservice biology teachers' knowledge structures as a function of professional teacher education: A year-long assessment. Science Education, 77, 25–45.
  • Gess-Newsome, J., Taylor, J.A., Carlson, J., Gardner, A. L., Wilson, C. D., & Stuhlsatz, M. A. (2017). Teacher pedagogical content knowledge, practice, and student achievement. International Journal of Science Education, 39, 1–20.
  • Glesne, C. (2011). Becoming qualitative researchers: An introduction(4th ed.). Boston, MA: Pearson.
  • Goodnough, K. (2010). Teacher learning and collaborative action research: Generating a “knowledge-of-practice” in the context of science education. Journal of Science Teacher Education, 21(8), 917–935.
  • Gökbulut, Y. (2010). Sınıf öğretmeni adaylarının geometrik cisimler konusundaki pedagojik alan bilgileri. Yayımlanmamış doktora tezi, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.
  • Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. New York: Teachers College Press.
  • Gunckel, K. L. (2013). Teacher knowledge for using learning progressions in classroom instruction and assessment. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
  • Holbrook, J. & Rannikmäe, M. (2009). The meaning of scientific literacy. International Journal of Science and Environmental Education, 4, 275–288.
  • Juhler, M. (2018). Pre-service teachers’ reflections on teaching a physics lesson: How does lesson study and content representation affect pre-service teachers’ potential to start developing PCK during reflections on a physics lesson. NORDINA, 14(1), 22-36.
  • Karahan, E. & Roehrig, G. (2016). Use of socioscientific contexts for promoting student agency in environmental science classrooms. Bartin University Journal of Faculty of Education, 5(2), 425 – 442.
  • Karisan, D. & Zeidler, D. L. (2017). Contextualization of nature of science within the socioscientific issues framework: A review of research. International Journal of Education in Mathematics. Science and Technology, 5(2), 139-152.
  • Kıryak, Z. & Çalık, M. (2017). Improving grade 7 students’ conceptual understanding of water pollution via common knowledge construction model. International Journal of Science and Mathematıcs Educatıon, 2(1), 1-22.
  • Kind, V. (2019). Development of evidence-based, student-learningoriented rubrics for pre-service science teachers’ pedagogical content knowledge. International Journal of Science Education, 41(7), 911-943.
  • Klosterman, M. L. & Sadler, T. D. (2010). Multi-level assessment of scientific content knowledge gains associated with socioscientific issues-based instruction. International Journal of Science Education, 32(8), 1017–1043.
  • Klosterman, M., Sadler, T., & Brown, J. (2012). Science teachers’ use of mass media to address socio-scientific and sustainability issues. Research in Science Education, 42(1), 51-74.
  • Kowalski, P. & Taylor, A. K. (2009). The effect of refuting misconceptions in the introductory psychology class. Teaching of Psychology, 36, 153–159.
  • Kuhn, D. & Crowell, A. (2011). Dialogic argumentation as a vehicle for developing young adolescent's thinking. Psychological Science, 22(4), 545–552.
  • Lambert, J. L. & Bleicher, R. E. (2017). Argumentation as a strategy for increasing preservice teachers’ understanding of climate change, a key global socioscientific issue. International Journal of Education in Mathematics, Science and Technology, 5(2), 101-112.
  • Lee, H., Chang, H., Choi, K., Kim, S., & Zeidler, D.L. (2012). Developing character and values for global citizens: Analysis of pre-service science teachers’ moral reasoning on socioscientific issues. International Journal of Science Education, 34(6), 925–953.
  • Lee, Y. C. & Grace, M. (2012). Students’ reasoning and decision making about a socioscientific issue: A cross-context comparison. Science Education, 96(5), 787–807.
  • Lee, H. S., Liu, O. L., Pallant, A., Roohr, K. C., Pryputniewicz, S., & Buck, Z. E. (2014). Assessment of uncertainty-infused scientific argumentation. Journal of Research in Science Teaching, 51(5), 581-605.
  • Levinson, R. (2006). Towards a theoretical framework for teaching controversial socioscientific issues. International Journal of Science Education, 28(10), 1201–1224.
  • Levinson, R. & Turner, S. (2001). Valuable lessons: Engaging with the social context of science in schools. London: The Wellcome Trust.
  • Loughran, J., Mulhall, P. and Berry, A. (2004). In search of pedagogical knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41, 370–391.
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95–132). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  • Martín-Gámez, C. & Erduran, S. (2018). Understanding argumentation about socioscientific issues on energy: a quantitative study with primary pre-service teachers in Spain. Journal Research in Science & Technological Education, 36(4), 463- 483.
  • Morris, H. ( 2014). Socioscientific issues and multidisciplinarity in school science textbooks. International Journal of Science Education, 36, 1137–1158.
  • Mueller, M. P. & Zeidler, D. L. (2010). Moral–ethical character and science education: Ecojustice ethics through socioscientific issues (SSI). In D. Tippins, M. Mueller, M. van Eijck, & J. Adams (Eds.), Cultural studies and environmentalism: The confluence of ecojustice, place-based (science) education, and indigenous knowledge systems (pp. 105–128). New York: Springer.
  • Muğaloğlu, E. Z., Doğança Küçük, Z., & Güven, D. (2016). Pre-service science teachers’ self-efficacy beliefs to teach socio-scientific issues. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 29(1), 95-110.
  • NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.
  • Nilsson, P. & Karlsson, G. (2019). Capturing student teachers’ pedagogical content knowledge (PCK) using CoRes and digital technology. International Journal of Science Education, 41(4), 419-447.
  • Orland-Barak, L. (2014). Mediation in mentoring: A synthesis of studies in teaching and teacher education. Teaching and Teacher Education, 44, 180–188. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.
  • Ottander, C. & Ekborg, M. (2012). Students’ experience of working with socioscientific issues—a quantitative study in secondary school. Research in Science Education, 42, 1147–1163.
  • Özden, M. (2015). Prospective elementary school teachers’ views about socioscientific ıssues: a concurrent parallel design study. International Electronic Journal of Elementary Education, 7(3), 333-354.
  • Parchmann, I., Grasel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). Che mie im Kontext: A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education, 28, 1041–1062.
  • Park, S. & Oliver, S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (pck): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284.
  • Park, S., Suh, J., & Seo, K. (2018). Development and validation of measures of secondary science teachers’ PCK for teaching photosynthesis. Research in Science Education, 48, 549-573.
  • Pitjeng-Mosabala, P.& Rollnick, M. (2018). Exploring the development of novice unqualified graduate teachers’ topic-specific PCK in teaching the particulate nature of matter in South Africa’s classrooms. International Journal of Science Education, 40(7), 742–770.
  • Presley, M. L., Sickel, A. J., Muslu, N., MerleJohnson, D., Witzig, S. B., Izci, K., & Sadler, T. D. (2013). A framework for socio-scientific issues based education. Science Educator, 22(1), 26-32.
  • Rice, A. H. & Kitchel, T. (2017). Teachers' beliefs about the purpose of agricultural education and ıts ınfluence on their pedagogical content knowledge. Journal of Agricultural Education, 58(2), 198-213.
  • Sadler, T. D. (2004). Informal reasoning regarding sbk: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536.
  • Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45, 1–42.
  • Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualisations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26, 387–409.
  • Sadler, T. D., Foulk, J. A., & Friedrichsen, P. J. (2017). Evolution of a model for socioscientific issue teaching and learning. International Journal of Education in Mathematics, Science and Technology, 5(2), 75-87.
  • Sadler, T. D. & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986–1004.
  • Sadler, T. D. & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88, 4–27.
  • Sadler, T. D. & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42(1), 112-138.
  • Saeli, M., Perrenet, J., & Jochems, W. M. G. (2012). Bert zwaneveld, programming: Teachers and pedagogical content knowledge in the netherlands. Informatics in Education, 11(1), 81–114.
  • Saunders, K. J. & Rennie, L. J. (2013). A pedagogical model for ethical inquiry into socioscientific issues in science. Research in Science Education, 43(1), 253–274.
  • Scharfenberg, F. J. & Bogner, F.X. (2016). A new role-change approach in pre-service teacher education for developing pedagogical content knowledge in the context of a student outreach lab. Research in Science Education, 46(5), 743–766.
  • Schneider, R. M. & Plasman, K. (2011). Science teacher learning progressions: A review of science teachers' pedagogical content knowledge development. Review of Educational Research, 81(4), 530– 565.
  • Schultze, F. & Nilsson, P. (2018). Coteaching with senior students – a way to refine teachers’ PCK for teaching chemical bonding in upper secondary school. International Journal of Science and Education, 40(6), 688-706.
  • Shing, C. L., Saat, R. M., & Loke, S. H. (2015). The knowledge of teaching--pedagogical content knowledge (pck). Malaysian Online Journal of Educational Sciences, 3(3), 40–55.
  • Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.
  • Simonneaux, L. (2007). Argumentation in socio-scientific contexts. Sibel Erduran & María Pilar Jiménez-Aleixandre (Editors). Argumentation in science education: An overview. (pp. 179–199). Dordrecht: Springer.
  • Simon, S., Erduran, S., & Osborne, J. (2002, March). Enhancing the quality of argumentation in school science. Paper presented at the National Association for Research in Science Teaching, New Orleans, USA.
  • Simonneaux, L. & Simonneaux, J. (2009). Socio-scientific reasoning influenced by identities. Cultural Studies of Science Education, 4, 705–711.
  • Tan, A-L., Lee, P. P. F., & Cheah, Y. H. (2017). Educating science teachers in the twentyfirst century: Implications for pre-service teacher education. Asia Pacific Journal of Education, 37(4), 453-471.
  • Todorova, M., Sunder, C., Steffensky, M., & Moller, K. (2017). Pre-service teachers' professional vision of instructional support in primary science classes: How content-specific is this skill and which learning opportunities in initial teacher education are relevant for its acquisition? Teaching and Teacher Education, 68, 275-288.
  • Toulmin, S. (1958). The use of argument. Cambridge, England: Cambridge University Press.
  • Topcu, M. S., Mugaloglu, E. Z., & Guven, D. (2014). Fen eğitiminde sosyobilimsel konular: Türkiye örneği. Kuram ve Uygulamada Eğitim Bilimleri, 14(6), 1-22.
  • Topçu, M., Yılmaz-Tüzün, Ö.,& Sadler, T. (2011). Turkish preservice science teachers’ informal reasoning regarding socioscientific issues and the factors influencing their informal reasoning. Journal of Science Teacher Education, 22(4), 313– 332.
  • Tippins, D. J., Mueller, M. P., Van Eijck, M., & Adams, J. (2010). Cultural studies and environmentalism: The confluence of ecojustice, place-based (science) education, and indigenous knowledge systems. The Netherlands: Springer. doi: 10.1007/978-90-481-3929-3.
  • Udomkun, W., Khaokhajorn, W., & Suwannoi, P. (2018). Developing pre- service science teachers ’ pedagogical content knowledge through the activities of training program. International Journal of Advanced Scientific Research and Management, 3(1), 10–15.
  • Vazquez-Bernal, B., Mellado, V., Jimenez-Perez, R., & Taboada Lenero, M. C. (2012). The process of change in science teachers’ professional development: A case study based on the types of problems in the classroom. Science Education, 96, 337–363.
  • Vieira, R. D., Bernardo, J. R. R., Evogorou, M., & de Melo, V. F. (2015). Argumentation in science teacher education: The simulated jury as a resource for teaching and learning. International Journal of Science Education, 37(7), 1113–1139.
  • Von, A. C., Erduran, S., Osborne, J. & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45, 101–131.
  • Widodo, A. (2017). Teacher pedagogical content knowledge (PCK) and students’ reasoning and wellbeing. Journal of Physics: Conference Series, 1-7.
  • Yang, Y., Liu, X., & Gardella Jr, J. A. (2018). Effects of professional development on teacher pedagogical content knowledge, inquiry teaching practices, and student understanding of interdisciplinary science. Journal of Science Teacher, 29(4), 263-282.
  • Yıldırım, A. & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (6. baskı). Ankara: Seçkin Yayıncılık.
  • Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education (pp. 697–726). Mahwah, NY: Routledge.
  • Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. Journal of Research in Science Teaching, 46(1), 74-101.
  • Zeidler, D. L., Sadler, T. D., Simmons, M. L. & Howes, E. V. (2005). A research based framework for socio-scientific issues education. Science Education, 89(3), 357– 377.
  • Zeidler, D., Walker, K., Ackett, W., & Simmons, M. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86, 343–367.
APA BİRDAL H, İnaltekin T (2019). SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. , 263 - 301.
Chicago BİRDAL Hasret Aycan,İnaltekin Tufan SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. (2019): 263 - 301.
MLA BİRDAL Hasret Aycan,İnaltekin Tufan SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. , 2019, ss.263 - 301.
AMA BİRDAL H,İnaltekin T SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. . 2019; 263 - 301.
Vancouver BİRDAL H,İnaltekin T SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. . 2019; 263 - 301.
IEEE BİRDAL H,İnaltekin T "SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ." , ss.263 - 301, 2019.
ISNAD BİRDAL, Hasret Aycan - İnaltekin, Tufan. "SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ". (2019), 263-301.
APA BİRDAL H, İnaltekin T (2019). SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. EKEV AKADEMİ DERGİSİ, 0(80), 263 - 301.
Chicago BİRDAL Hasret Aycan,İnaltekin Tufan SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. EKEV AKADEMİ DERGİSİ 0, no.80 (2019): 263 - 301.
MLA BİRDAL Hasret Aycan,İnaltekin Tufan SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. EKEV AKADEMİ DERGİSİ, vol.0, no.80, 2019, ss.263 - 301.
AMA BİRDAL H,İnaltekin T SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. EKEV AKADEMİ DERGİSİ. 2019; 0(80): 263 - 301.
Vancouver BİRDAL H,İnaltekin T SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ. EKEV AKADEMİ DERGİSİ. 2019; 0(80): 263 - 301.
IEEE BİRDAL H,İnaltekin T "SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ." EKEV AKADEMİ DERGİSİ, 0, ss.263 - 301, 2019.
ISNAD BİRDAL, Hasret Aycan - İnaltekin, Tufan. "SOSYOBİLİMSEL KONULARDA ARGÜMANTASYONA DAYALI ÖĞRENME UYGULAMALARININ FEN BİLİMLERİ ÖĞRETMEN ADAYLARININ ÖĞRENCİYİ ANLAMA BİLGİLERİNİN GELİŞİMİNE ETKİSİ". EKEV AKADEMİ DERGİSİ 80 (2019), 263-301.