Yıl: 2019 Cilt: 16 Sayı: 3 Sayfa Aralığı: 252 - 260 Metin Dili: İngilizce DOI: 10.4274/tjps.galenos.2018.92408 İndeks Tarihi: 25-08-2020

Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels

Öz:
Objectives: Hydrogels are macromolecular networks able to absorb and release water/biological fluids in a reverse-phase manner, in response tospecific environmental stimuli. Such stimuli-sensitive behavior makes hydrogels interesting for the design of smart devices applicable to a varietyof technological fields. They are able to absorb and retain 10-20% and up to 1000 times the water or biological fluids than their dry weight can. Theaim of this study was to extend the work on drug delivery in the stomach at pH 2-2.2.Materials and Methods: The authors synthesized sodium alginate (SA)/poly(vinyl alcohol) (PVA) hydrogels. These hydrogels were characterized byfourier transform infrared spectroscopy and scanning electron microscopy, and the swelling properties of the hydrogels were examined at differentpH values, in different salts, at different temperatures, and in different acids and bases.Results: The authors studied and reported the swelling effects or variations such as the effects of salts, acids, bases, temperature, and pH. Theresults for the crosslinking agent glutaraldehyde showed that 8 mL of glutaraldehyde had a higher swelling rate compared to that of 10 mL and 12mL.Conclusion: In this work the authors studied the swelling degree in different acids and bases. It is concluded that the degree of swelling decreaseswith increases in the concentration of glutaraldehyde and also depending on the concentrations of the acids. The swelling degrees of PVA/SAhydrogels gradually increase with increases in the concentrations of acids (low pH). The swelling of hydrogels decreases with increases in pH (>7)or at high alkaline. Based on the results for salt solutions the swelling behavior was found to be in the order: K+>Na+>Ca2+>Mg2+.
Anahtar Kelime:

Sodyum Aljinat/Poli(vinil alkol) Hidrojellerinin Sentezi ve Şişme Davranışları

Öz:
Amaç: Hidrojeller, belirli çevresel uyaranlara yanıt olarak su/biyolojik sıvıları ters fazda emebilen ve serbest bırakabilen makromoleküler ağlardır. Bu tür uyaranlara duyarlı davranış, çeşitli teknolojik alanlara uygulanabilen akıllı cihazların tasarımı için hidrojelleri ilginç kılar. Kuru ağırlığından %10- 20 ve 1000 veya daha fazla su veya biyolojik sıvıları emebilir ve tutabilirler. Bu çalışmanın amacı, midede ilaç dağıtım çalışmalarını pH 2-2.2’sinde genişletmektir. Gereç ve Yöntemler: Yazarlar sentezlenmiş sodyum aljinat (SA)/poli(vinil alkol) (PVA) hidrojellerdir. Bu hidrojeller fourier dönüşümü kızılötesi spektroskopisi, taramalı elektron mikroskobu, farklı pH’larda hidrojellerin şişme özellikleri, tuzlar, farklı sıcaklık, farklı asitler ve bazlar ile karakterize edilir. Bulgular: Yazarlar, tuzların, asitlerin, bazların, sıcaklığın ve pH’ın etkisi gibi şişme etkilerini veya varyasyonlarını incelediler ve rapor ettiler. Çapraz bağlama maddesi glutaraldehitin etkisi, 8 mL glutaraldehidin, 10 mL ve 12 mL’ninkiyle karşılaştırıldığında en yüksek şişme oranına sahip olduğunu göstermektedir. Sonuç: Bu çalışmada yazarlar farklı asit ve bazlarda şişme derecesini incelemişlerdir. Glutaraldehit konsantrasyonundaki artışla ve aynı zamanda asit konsantrasyonuna bağlı olarak şişlik derecesinin azaldığı sonucuna varılmıştır. PVA/SA hidrojellerinin şişme derecesi, asit konsantrasyonundaki artışla (düşük pH) kademeli olarak artmaktadır. Hidrojellerin şişmesi pH’ın (>7) artmasıyla veya yüksek alkali ile azalır. Tuz çözeltilerinin etkisinde şişme davranışının sırasıyla: K+ >Na+ >Ca2+>Mg2+ olduğu bulunmuştur.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Serp D, Mueller M, Von Stockar U, Marison IW. Low-temperature electron microscopy for the study of polysaccharide ultrastructures in hydrogels. II. Effect of temperature on the structure of Ca2+-alginate beads. Biotechnol Bioeng. 2002;79:253-259.
  • 2. Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267-285.
  • 3. Dumitriu S. Polymeric Biomaterials, Revised and Expanded. Boca Raton; CRC Press; 2001:1-62.
  • 4. Gemienhart RA, Guo C. Fast swelling hydrogel systems. In: Yui N, Mrsny RJ, Park K, eds. Reflexive Polymers and Hydrogels. New York; CRC Press; 2004:245-258.
  • 5. Rosiak JM, Yoshii F. Hydrogels and medical applications. Nucl Instr Meth Phys Rev. 1999;151:56-64.
  • 6. Silva GS, Fernadez LRV, Higa OZ, Vitolo M, De Queiroz ASA. AlginatePoly (vinyl alcohol) core-shell microspheres for lipase - immobilization. Cebecimat, XVI congreso Brasileiro de Engenhariae Ciencia dos Materials. Porto Alegre – RS de 28 de novembroa 02 de dezembro de; 2004:15.
  • 7. Abbas AA, Lee SY, Selvaratnam L, Yusof N, Kamaru T. Porous PVAchitosan based hydrogels as an extracellular matrix scaffold for cartilage regeneration. European Cells and materials. 2008;16(Suppl 2):50.
  • 8. Ustundag GC, Karaca E, Ozbek S, Cavusoglu I. In vivo evaluation of electrospun Poly (vinyl alcohol) / sodium alginate nanofibrous mat a wound Dressing. Tekstil ve Konveksiyon. 2010;4:290-298.
  • 9. Sariri R. Physicochemical characteristics and Biomedical applications of hydrogel. A review. J Phys Theor Chem IAU Iran. 2011;8:217-231.
  • 10. Tombs MP, Harding SE. An Introduction to Polysaccharide Biotechnology. Taylor and Francis UK; 1999:183.
  • 11. Cunha AG, Gandini A. Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicellulose, chitin/chitosan, starch, pectin and alginates. Cellulose. 2001;17:1045-1065.
  • 12. Cha DS, Choi JH, Chinnan MS, Park HJ. Antimicrobial film based on Na-alginate and K- carrageenan. Lebensmittel Wissenschaft und Technologie. 2002;35:715- 719.
  • 13. Boninsegna S, Dal Toso RD, Monte RD, Carturan G. Alginate microspheres loaded with animal cells and coated by a siliceous layer. Journal of SolGel Science and Technology. 2003;26:1151-1157.
  • 14. Lee KY. Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101:1869-1879.
  • 15. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;43:3-12.
  • 16. Bahrami SB, Kordestani SS, Mirzadeh H, Mansoori P. Poly (vinyl alcohol) - Chitosan blends: preparation, mechanical and physical properties. Iranian Polymer Journal. 2003;12:139-146.
  • 17. Nam SY, Nho YC, Hong SH, Chae GT, Jang HS, Suh TS, Ahn WS, Ryu KE, Chun HJ. Evaluations of poly (vinyl alcohol)/alginate hydrogels cross-linked by γ-ray irradiation technique. Macromolecular Research. 2004;12:219-224.
  • 18. Mishra S, Bajpai R, Katare R, Bajpai AK. Radiation induced cross linking effect on semi -interpenetrating polymer networks of poly (vinyl alcohol). Express Polymer Letters. 2007;1:407-415.
  • 19. Zain NAM, Suhaimi MS, Idris A. Development and modification of PVA - alginate as suitable immobilization matrix. Process Biochemistry. 2011;46:2122-2129.
  • 20. Wu KY, Wisecarver KD. Cell immobilization using PVA crosslinked with boric acid. Biotechnol Bioeng. 1992;39:447-449.
  • 21. Dave R, Madamwar D. Polymer of poly (vinyl alcohol)- boric acid for esterification in organic media. Indian Journal of Biotechnology. 2006;5(Suppl):368-372.
  • 22. Kulkarni AR, Soppimath KS, Aminabhavi TM. Controlled release of diclofenac sodium from sodium alginate beads crosslinked with glutaraldehyde. Pharm Acta Helv. 1999;74:29-36.
  • 23. Ostberg T, Vesterhus L, Graffner C. Calcium alginate matrices for oral multiple unit administration. Part 2. Effect of process and formulation factors on matrix properties. Int J Pharm. 1993;97:183-193.
  • 24. Pillay V, Dangor DM, Govender T, Moopanar KR, Hurbans N. Drug release modulation from cross-linked calcium alginate microdiscs, 2: swelling, compression, and stability of the hydrodynamically-sensitive calcium alginate matrix and the associated drug release mechanisms. Drug Delivery. 1998;5:35-46.
  • 25. Pillay V, Dangor CM, Govender T, Moopanar KR, Hurbans N. Ionotropic gelation: encapsulation of indomethacin in calcium alginate gel discs. J Microencapsul. 1998;15:215-226.
  • 26. Pillay R, Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract. I. Comparison of pH-responsive drug release and associated kinetics. J Controlled Release. 1999;59:229-242.
  • 27. Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH. Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J Control Release. 2000;63:97-105.
  • 28. Kim YJ, Yoon KJ, Ko SW. J Appl Polym Sci. 2000;78:1797-1804.
  • 29. Tripathy T, Pandey SR, Karmakar NC, Bhagat RP, Singh RP. Eur Polym J. 1999;35:2057-2072.
  • 30. Beebe DJ, Moore JS, Bauer JM, Liu Q, Yu RH, Devadoss C, Jo BH. Functional hydrogel structures for autonomous flaw control inside micro- fluidic channels. Nature. 2000;404:588-590.
  • 31. Shahinpoor M. J. Micro-elecctro - mechanics of ionic polymer gels as electrically controllable artificial muscles. Intell Mater Syst Struct. 1995;6:307-314.
  • 32. Brock D, Lee WJ. A dynamic model of a linear actuator based on polymer Hydrogels. Intel Mater System Struct. 1994;5:764-771.
  • 33. Helfferich F. Ion exchange. New York: McGraw-Hill, 1962:5.
  • 34. Grodzinsky AJ, Grinshaw PE. Elctrically and chemically controlled hydrogels, for drug delivery. Pulsed and Self-Regulated Drug Delivery. 1990:47-64.
  • 35. Peppas NA, Brannon - Peppas L. Solute and Penetrant diffusion in swellable polymers. IX. The mechanism of drug release from pH – sensitive swelling –controlled systems. J Control Release. 1989:267- 274.
  • 36. Eisenberg SR. The kinetics of chemically induced non equilibrium swelling of articular cartilage and corneal stroma. J Biomed Eng. 1987;109:79-89.
  • 37. Myers ER, Lai WM, Mow VC. A continuum theory and an experiment for the ion-induced swelling behavior of articular cartilage. J Biomech Eng. 1984;106:151- 158.
  • 38. Okano K, Bac YH, Kim SW. “Temperature responsive controlled drug delivery.” Pulsed and self- regulated drug delivery pulsed and selfregulated Drug Delivery. 1990:17-46.
  • 39. Kim JO, Park JK, Kim JH, Jin SG, Yonga CS, Li Dx, Choi HG. Development of Poly (vinyl alcohol) - sodium alginate gel-matrix –based wound dressing system Containing Nitrofurazone. Int J Pharm. 2008;359:79-86.
  • 40. Chhatri A, Bajpai AK, Shandhu SS, Jain N, Biswas, J. Cryogenic fabrication of salvon loaded macroporous blends of alginate and Poly(vinyl alcohol) (PVA). Swelling, deswelling and antibacterial behaviors. Cabohydr Polym. 2011;83:876-882.
  • 41. Mansur HS, Orefice RL, Mansur AAP. Characterization of Poly (vinyl alcohol)/ Poly (ethylene glycol) hydrogels and PVA – derived hybrids by small –angle x-Ray Scattering and FTIR spectroscopy. Polymer 2004;45:7193-7202.
  • 42. Sonali K, Udayabhanu MJ, Karthik KT, Rebecca G, David KM. Permance evalution of nanoclay enriched anti-microbial hydrogels for biomedical application. Heliyon. 2016;2:e00072.
  • 43. Kamouna EA, Kenawy ERS, Tamer TM, Meligy MAE, Eldin MSM. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian Journal of Chemistry. 2015;8:38-47.
  • 44. Zho Y, Su H, Fang L, Tan T. Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and pH-responsiveness properties. Polymer. 2005;46:5368-5376.
  • 45. Raafat AI, Eid M, El-Arnaouty MB. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nuclear Instrument and Methods in Physics Research Section B Beam Interactions with Materials and Atoms. 2012;283:71-76.
APA SHIVAKUMARA L, DEMAPPA T (2019). Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. , 252 - 260. 10.4274/tjps.galenos.2018.92408
Chicago SHIVAKUMARA Lachakkal Rudrappa,DEMAPPA Thippaiah Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. (2019): 252 - 260. 10.4274/tjps.galenos.2018.92408
MLA SHIVAKUMARA Lachakkal Rudrappa,DEMAPPA Thippaiah Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. , 2019, ss.252 - 260. 10.4274/tjps.galenos.2018.92408
AMA SHIVAKUMARA L,DEMAPPA T Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. . 2019; 252 - 260. 10.4274/tjps.galenos.2018.92408
Vancouver SHIVAKUMARA L,DEMAPPA T Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. . 2019; 252 - 260. 10.4274/tjps.galenos.2018.92408
IEEE SHIVAKUMARA L,DEMAPPA T "Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels." , ss.252 - 260, 2019. 10.4274/tjps.galenos.2018.92408
ISNAD SHIVAKUMARA, Lachakkal Rudrappa - DEMAPPA, Thippaiah. "Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels". (2019), 252-260. https://doi.org/10.4274/tjps.galenos.2018.92408
APA SHIVAKUMARA L, DEMAPPA T (2019). Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. Turkish Journal of Pharmaceutical Sciences, 16(3), 252 - 260. 10.4274/tjps.galenos.2018.92408
Chicago SHIVAKUMARA Lachakkal Rudrappa,DEMAPPA Thippaiah Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. Turkish Journal of Pharmaceutical Sciences 16, no.3 (2019): 252 - 260. 10.4274/tjps.galenos.2018.92408
MLA SHIVAKUMARA Lachakkal Rudrappa,DEMAPPA Thippaiah Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. Turkish Journal of Pharmaceutical Sciences, vol.16, no.3, 2019, ss.252 - 260. 10.4274/tjps.galenos.2018.92408
AMA SHIVAKUMARA L,DEMAPPA T Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. Turkish Journal of Pharmaceutical Sciences. 2019; 16(3): 252 - 260. 10.4274/tjps.galenos.2018.92408
Vancouver SHIVAKUMARA L,DEMAPPA T Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels. Turkish Journal of Pharmaceutical Sciences. 2019; 16(3): 252 - 260. 10.4274/tjps.galenos.2018.92408
IEEE SHIVAKUMARA L,DEMAPPA T "Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels." Turkish Journal of Pharmaceutical Sciences, 16, ss.252 - 260, 2019. 10.4274/tjps.galenos.2018.92408
ISNAD SHIVAKUMARA, Lachakkal Rudrappa - DEMAPPA, Thippaiah. "Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels". Turkish Journal of Pharmaceutical Sciences 16/3 (2019), 252-260. https://doi.org/10.4274/tjps.galenos.2018.92408