Yıl: 2019 Cilt: 20 Sayı: 3 Sayfa Aralığı: 373 - 392 Metin Dili: İngilizce DOI: 10.18038/estubtda.593234 İndeks Tarihi: 29-09-2020

OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD)

Öz:
In order to characterize thermal dependent physical properties of materials, potentially to be used in technological applications,an accurate interatomic-potential parameter set is a must. In general, conjugate-gradient methods and more recently,metaheuristics such as genetic algorithms are employed in determining these interatomic potentials, however, especially theuse of metaheuristics specifically designed for optimization of real valued problems such as particle swarm and evaluationstrategies are limited in the mentioned problem. In addition, some of these parameters are conflicting in nature, for which multiobjective optimization procedures have a great potential for better understanding of these conflicts. In this respect, we aim topresent a widely used interatomic potential parameter set, the Stillinger–Weber potential, obtained through three differentoptimization methods (particle swarm optimization, PSO, covariance matrix adaptation evolution strategies, CMA-ES, andnon-dominated sorting genetic algorithm, NSGA-III) for two-dimensional materials $MoS_2,;WS_2,;WSe_2,;and;MoSe_2.$. These twodimensional transition metal dichalcogenides are considered as a case mainly due to their potential in a variety of promisingtechnologies for next generation flexible and low-power nanoelectronics, (such as photonics, valleytronics, sensing, energy storage,and optoelectronic devices) as well as their excellent physical properties (such as electrical, mechanical, thermal, and opticalproperties) different from those of their bulk counterparts. The results show that the outputs of all optimization methods convergeto ideal values with sufficiently long iterations and at different trials. However, when we consider the results of the statisticalanalyses of different trials under similar conditions, we observe that the method with the lowest error rate is the CMA-ES.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Chhowalla M, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013; 5: p. 263.
  • [2] Radisavljevic B, et al., Single-layer MoS2 transistors. Nat Nanotechnol, 2011; 6(3): p. 147-50.
  • [3] Lopez-Sanchez O, et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013; 8(7): p. 497-501.
  • [4] Cao T, et al., Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Communications, 2012; 3: p. 887.
  • [5] Jariwala D., et al., Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2014; 8(2): p. 1102-1120.
  • [6] Wang Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012; 7: p. 699.
  • [7] Radisavljevic B., M.B. Whitwick, and A. Kis, Small-signal amplifier based on single-layer MoS2. Applied Physics Letters, 2012; 101(4): p. 043103.
  • [8] Liu H. and P.D. Ye, MoS2 Dual-Gate MOSFET With Atomic-Layer-Deposited Al2O3 as Top-Gate Dielectric. IEEE Electron Device Letters, 2012; 33(4): p. 546-548.
  • [9] Fang H., et al., High-performance single layered WSe(2) p-FETs with chemically doped contacts. Nano Lett, 2012;12(7): p. 3788-92.
  • [10] Pumera M, Graphene-based nanomaterials for energy storage. Energy & Environmental Science, 2011;4(3): p. 668-674.
  • [11] Wang H, H. Feng, and J. Li, Graphene and Graphene-like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014; 10(11): p. 2165-2181.
  • [12] Huang J.-K, et al., Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, 2014; 8(1): p. 923-930.
  • [13] Gutiérrez H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013; 13(8): p. 3447-3454.
  • [14] Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
  • [15] Aykol M. and C. Wolverton, Local environment dependent GGA+U method for accurate thermochemistry of transition metal compounds. Physical Review B, 2014; 90(11): p. 115105.
  • [16] Payam N. and J.S. David, Thermal conductivity of single-layer WSe2 by a Stillinger–Weber potential. Nanotechnology, 2017; 28(7): p. 075708.
  • [17] Rapaport D.C., The Art of Molecular Dynamics Simulation. 2 ed. 2004; Cambridge: Cambridge University Press.
  • [18] Andrei N., Conjugate gradient Algorithms for Molecular Formation under pairwise Potential Minimization, in Proceedings of the Fifth Workshop on Mathematical Modelling of Environmental and Life Sciences Problems. 2006; Romania.
  • [19] Solomon J., et al., Method and advantages of genetic algorithms in parameterization of interatomic potentials: Metal oxides. Computational Materials Science, 2014; 81: p. 453-465.
  • [20] Voglis C., et al., A parallel hybrid optimization algorithm for fitting interatomic potentials. Applied Soft Computing, 2013; 13(12): p. 4481-4492.
  • [21] Tersoff J., New empirical model for the structural properties of silicon. Physical Review Letters, 1986; 56(6): p. 632-635.
  • [22] Liang T., S.R. Phillpot, and S.B. Sinnott, Parametrization of a reactive many-body potential for Mo--S systems. Physical Review B, 2009; 79(24): p. 245110.
  • [23] Stillinger F.H. and T.A. Weber, Computer simulation of local order in condensed phases of silicon. Physical Review B, 1985; 31(8): p. 5262-5271.
  • [24] Ichimura M., Stillinger-Weber potentials for III–V compound semiconductors and their application to the critical thickness calculation for InAs/GaAs. physica status solidi (a), 1996; 153(2): p. 431-437.
  • [25] Blöchl P.E., Projector augmented-wave method. Physical Review B, 1994; 50(24): p. 17953- 17979.
  • [26] Kresse G. and J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Physical Review B, 1993; 48(17): p. 13115-13118.
  • [27] Kresse G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996; 54(16): p. 11169-11186.
  • [28] Baroni S., et al., Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 2001; 73(2): p. 515-562.
  • [29] Togo A., F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2 type SiO2 at high pressures. Physical Review B, 2008. 78(13): p. 134106.
  • [30] Kennedy J.F., R.C. Eberhart, and Y. Shi, Swarm intelligence. The Morgan Kaufmann series in evolutionary computation. 2001, San Francisco: Morgan Kaufmann Publishers. xxvii, 512 p.
  • [31] Clerc M. and J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space. Trans. Evol. Comp, 2002; 6(1): p. 58-73.
  • [32] Bäck T., C. Foussette, and P. Krause, Contemporary evolution strategies. 2013, New York, NY: Springer Berlin Heidelberg. pages cm.
  • [33] Bäck T., Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms. 1996; New York: Oxford University Press. xii, 314 p.
  • [34] Hansen N. and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. in Proceedings of IEEE International Conference on Evolutionary Computation. 1996.
  • [35] Hansen N. and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation, 2001; 9(2): p. 159-195.
  • [36] Hansen N. and S. Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. in Parallel Problem Solving from Nature - PPSN VIII. 2004; Berlin, Heidelberg: Springer Berlin Heidelberg.
  • [37] Kresse G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
  • [38] Gale J.D. and A.L. Rohl, The General Utility Lattice Program (GULP). Molecular Simulation, 2003; 29(5): p. 291-341.
  • [39] Deb K. and H. Jain, An Evolutionary Many-Objective Optimization Algorithm Using ReferencePoint-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation, 2014; 18(4): p. 577-601.
APA KARAASLAN Y, YAPICIOĞLU H, SEVİK C (2019). OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). , 373 - 392. 10.18038/estubtda.593234
Chicago KARAASLAN Yenal,YAPICIOĞLU Haluk,SEVİK Cem OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). (2019): 373 - 392. 10.18038/estubtda.593234
MLA KARAASLAN Yenal,YAPICIOĞLU Haluk,SEVİK Cem OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). , 2019, ss.373 - 392. 10.18038/estubtda.593234
AMA KARAASLAN Y,YAPICIOĞLU H,SEVİK C OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). . 2019; 373 - 392. 10.18038/estubtda.593234
Vancouver KARAASLAN Y,YAPICIOĞLU H,SEVİK C OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). . 2019; 373 - 392. 10.18038/estubtda.593234
IEEE KARAASLAN Y,YAPICIOĞLU H,SEVİK C "OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD)." , ss.373 - 392, 2019. 10.18038/estubtda.593234
ISNAD KARAASLAN, Yenal vd. "OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD)". (2019), 373-392. https://doi.org/10.18038/estubtda.593234
APA KARAASLAN Y, YAPICIOĞLU H, SEVİK C (2019). OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). Eskişehir Technical University Journal of Science and and Technology A- Applied Sciences and Engineering, 20(3), 373 - 392. 10.18038/estubtda.593234
Chicago KARAASLAN Yenal,YAPICIOĞLU Haluk,SEVİK Cem OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). Eskişehir Technical University Journal of Science and and Technology A- Applied Sciences and Engineering 20, no.3 (2019): 373 - 392. 10.18038/estubtda.593234
MLA KARAASLAN Yenal,YAPICIOĞLU Haluk,SEVİK Cem OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). Eskişehir Technical University Journal of Science and and Technology A- Applied Sciences and Engineering, vol.20, no.3, 2019, ss.373 - 392. 10.18038/estubtda.593234
AMA KARAASLAN Y,YAPICIOĞLU H,SEVİK C OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). Eskişehir Technical University Journal of Science and and Technology A- Applied Sciences and Engineering. 2019; 20(3): 373 - 392. 10.18038/estubtda.593234
Vancouver KARAASLAN Y,YAPICIOĞLU H,SEVİK C OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD). Eskişehir Technical University Journal of Science and and Technology A- Applied Sciences and Engineering. 2019; 20(3): 373 - 392. 10.18038/estubtda.593234
IEEE KARAASLAN Y,YAPICIOĞLU H,SEVİK C "OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD)." Eskişehir Technical University Journal of Science and and Technology A- Applied Sciences and Engineering, 20, ss.373 - 392, 2019. 10.18038/estubtda.593234
ISNAD KARAASLAN, Yenal vd. "OPTIMIZING THE THERMAL TRANSPORT PROPERTIES OF SINGLE LAYER (2D) TRANSITION METAL DICHALCOGENIDES (TMD)". Eskişehir Technical University Journal of Science and and Technology A- Applied Sciences and Engineering 20/3 (2019), 373-392. https://doi.org/10.18038/estubtda.593234