Yıl: 2020 Cilt: 35 Sayı: 4 Sayfa Aralığı: 1939 - 1956 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.652878 İndeks Tarihi: 14-01-2021

Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi

Öz:
Bu çalışmada; alüminyum alaşımı AA6063’den yapılmış farklı koniklik açısı (0°, 5° ve 10°) ve ekseneldoğrultuda farklı kalınlığa (0,5 mm - 4 mm) sahip bölgelerden oluşmuş değişken kalınlıklı tüplerin (DKT)enerji sönümleme davranışları sayısal olarak incelenmiştir. Analizler sonucunda tüplerin deformasyonşekilleri, kuvvet-yer değiştirme ve enerji-zaman grafikleri elde edilmiştir. Farklı koniklik açıları için endüşük pik kuvvet ve en yüksek özgül enerji sönümleme (ÖES) değerlerini sağlayan optimum bölgekalınlıkları, İleri Beslemeli Yapay Sinir Ağları (İBYSA) tekniğini içeren optimizasyon yöntemi ilebelirlenmiştir. Optimizasyon sonucunda elde edilen katman kalınlıklarının DKT’nin enerji sönümlemedavranışını iyileştirdiği görülmüştür.
Anahtar Kelime:

Numerical investigation of energy absorption behaviors of variable thickness tubes

Öz:
In this study; the energy absorption behaviors of variable thickness tube (VTT) made of aluminum alloy AA6063 which has different thickness (0.5 mm - 4 mm) layers in axial direction and different taper angles (0°, 5° and 10°) were numerically investigated. As a result of analysis deformations pattern, forcedisplacement and energy-time graphs of the tubes were obtained. Optimum layer thicknesses which provide the lowest peak force and the highest specific energy absorbing (SEA) values for different taper angles, were determined by the optimization method which includes Feedforward Artificial Neural Networks (FNN) technique. The layer thicknesses obtained as a result of optimization showed that the energy absorption behavior of the VTT was improved.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Abramowicz W., Jones N., Dynamic axial crushing of circular tubes, International Journal of Impact Engineering, 2 (3), 263-281, 1984.
  • 2. Salehghaffari S., Tajdari M., Panahi M., Mokhtarnezhad F., Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading, Thin-Walled Structures, 48 (6), 379-390, 2010.
  • 3. Xu B., Cheng W., Wenlong X., An efficient energy absorber based on fourfold-tube nested circular tube system, Thin-Walled Structures, 137, 143-150, 2019.
  • 4. Xiong Z., Zhuzhu W., Hui Zhang, Axial crushing and optimal design of square tubes with graded thickness, Thin-Walled Structures, 84, 157-163, 2014.
  • 5. Christopher P. K., Mohammadi M., Raja K. M., Inal K., Effects of elastic–plastic behaviour on the axial crush response of square tubes, Thin-Walled Structures, 93, 64-87, 2015.
  • 6. Xiong Z., Hui Z., Weijie R., Axial crushing of tubes fabricated by metal sheet bending, Thin-Walled Structures, 122, 252-263, 2018.
  • 7. Caihua Z., Yan Z., Bo W., Crashworthiness design for trapezoid origami crash boxes, Thin-Walled Structures, 117, 257-267, 2017.
  • 8. Caihua Z., Shizhao M., Chaoxiang X., Bo W., Xiangjun B., Peng H., Mingfa R., The energy absorption of rectangular and slotted windowed tubes under axial crushing, International Journal of Mechanical Sciences, 141, 2018.
  • 9. Özer M., Altınkaynak A., Temiz V., Mutlu T., Dışpınar T., Özgen A., Yücel M., Dynamic analysis of front loading washing machine using finite element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 773-780, 2016.
  • 10. Yaman K., Özcan M., Tekiner Z., Determination of the spinning parameters of AISI 304L stainless steel by using finite element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 299-331, 2018.
  • 11. Caihua Z., Shizhao M., Chaoxiang X., Bo W., Xiangjun B., Peng H., Mingfa R., The energy absorption of rectangular and slotted windowed tubes under axial crushing, International Journal of Mechanical Sciences, 141, 89-100, 2018.
  • 12. Altın M., Investigation of performances of energy absorbing profiles having different geometries under oblique loads. Journal of the Faculty of Engineering and Architecture of Gazi University 34 (3), 1517-1525, 2019.
  • 13. Kai Y., Shanqing X., Shiwei Z., Yi M., Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption, Thin-Walled Structures, 123, 100-113, 2018.
  • 14. Duarte I., Opara L. K.-, Oliveira J. D., Vesenjak M., Axial crush performance of polymer-aluminium alloy hybrid foam filled tubes, Thin-Walled Structures, 138, 124-136, 2019.
  • 15. Eyvazian A., Meisam K. Habibi, Abdel M. H., Hedayati R., Axial crushing behavior and energy absorption efficiency of corrugated tubes, Materials & Design, 54, 1028-1038, 2014.
  • 16. Kamal M., Shah M., Noorhifiantylaily A., Irma O., J. W.,Sahari, Study Of Crasworthiness Behaviour Of Thin Walled Tube under Axial Loading by Using Computational Mechanics, International Journal of Materials and Mettallurgical Engineering 10 (8), 1170- 1175, 2016.
  • 17. Hsu S. S., Jones N., Quasi-static and dynamic axial crushing of thin-walled circular stainless steel,mild steel and aluminium alloy tubes, Int.J.Crash-worthiness 9(2), 195–217, 2004.
  • 18. Fan Z., Lu G., Liu K., Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes, Engineering Structures. 55, 80-89, 2013.
  • 19. Tanlak N., Sonmez F. O., Optimal shape design of thinwalled tubes under high-velocity axial impact loads, Thin-Walled Structures, 84, 302–312, 2014.
  • 20. Liu W., Lin Z., Wang N., Deng X., Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact, Thin-Walled Structures, 100, 25–37, 2016.
  • 21. Javad Marzbanrad, Mehdi Mehdıkhanlo , Ashkan Saeedı Pour, An energy absorption comparison of square, circular, and elliptic steel and aluminum tubes under impact loading, Turkish J. Eng. Env. Sci. 33, 159 – 166, 2009.
  • 22. Guler M. A., Cerit M. E., Bayram B., Gerceker B., Karakaya E., The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading, International Journal of Crashworthiness, 15 (4), 377–390, 2010.
  • 23. Z.Ahmad, D.P.Thambiratnam, Crushing response of foam-filled conical tubes under quasi-static axial loading, Materials and Design, 30, 2393–2403, 2009.
  • 24. Zhibin L., Jilin Y., Liuwei G., Deformation and energy absorption of aluminum foam-filled tubes subjected to oblique loading, International Journal of Mechanical Sciences, 54, 48–56, 2012.
  • 25. Chun-ji Z, Yi F., Xue-bin Z., Mechanical properties and energy absorption properties of aluminum foam-filled square tubes, Trans. Nonferrous Met. Soc. China, 20, 1380−1386, 2010.
  • 26. Xiong Z., Hoon H., Energy absorption of longitudinally grooved square tubes under axial compression, ThinWalled Structures, 47, 1469–1477, 2009.
  • 27. Abolfazl D., Ata M., Majid A., Reza R., Low velocity impact of empty and foam filled circumferentially grooved thick-walled circular tubes, Thin–Walled Structures, 110, 97–105, 2017.
  • 28. Kai Y., Shanqing X., Shiwei Z., Yi M., Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption, Thin-Walled Structures, 123, 100–113, 2018.
  • 29. Wen S., Xianguang G., Ping J., Jinfang H., Xiaojiang L., Lijun Q., Crushing analysis and multiobjective optimization design for rectangular unequal triple-cell tubes subjected to axial loading, Thin-Walled Structures 117, 190–198, 2017.
  • 30. Xiong Z., Hui Z., Zong W., Bending collapse of square tubes with variable thickness, International Journal of Mechanical Sciences, 106, 107–116, 2016.
  • 31. Emin E., Baykasoglu C., Tunay M., Quasi-static Axial Crushing Behavior of Thin-walled Circular Aluminum Tubes with Functionally Graded Thickness, Procedia Engineering, 149, 559 – 565, 2016 .
  • 32. Sharad R., Anirudh N., Theerthana N., Upadhyay A.K., Collapse Behavior and Energy Absorption in Elliptical Tubes with Functionally Graded Corrugation, Procedia Engineering 173, 1374 –1381, 2017.
  • 33. Yong Z., Minghao L., Guangyong S., Guangyao L., Qing L., On functionally graded composite structures for crashworthiness, Composite Structures, 132, 393– 405, 2015.
  • 34. Xiuzhe A., Yunkai G., Jianguang F., Guangyong S., Qing L., Crashworthiness design for foam-filled thinwalled structures with functionally lateral graded thickness sheets, Thin-Walled Structures, 91, 63–71, 2015.
  • 35. Yafeng C., Zhonghao B., Linwei Z., Yulong W., Guangyong S., Libo C., Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles, Thin–Walled Structures, 110, 133–139, 2017.
  • 36. Nader J., Mohammad J., Crushing behavior of multicomponent conical tubes as energy absorber: A comparative analysis between end-capped and noncapped conical tubes, Engineering Structures, 178, 128– 135, 2019.
  • 37. Xiong Z., Hui Z., Zong W., Bending collapse of square tubes with variable thickness, International Journal of Mechanical Sciences, 106, 107–116, 2016.
  • 38. Meric D., Gedikli H., Energy absorption behavior of tailor-welded tapered tubes under axial impact loading using coupled FEM/SPH method, Thin-Walled Structures, 104, 17-33, 2016.
  • 39. Attia M.S., Meguid S.A., Nouraei H., Nonlinear finite element analysis of the crush behaviour of functionally graded foam-filled columns, Finite Elements in Analysis and Design, 61, 50-59, 2012.
  • 40. Zarei H.R., Kröger M., Crashworthiness optimization of empty and filled aluminum crash boxes, International Journal of Crashworthiness, 12, 255-264, 2007.
  • 41. Acar E., Guler M.A., Gerçeker B., Cerit M.E., Bayram B., Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations, Thin-Walled Structures, 49, 94-105, 2011.
  • 42. Ls-Opt User’s manual, LSTC; 2010.
  • 43. Meriç D., Farklı Malzemelerden Yapılmış Tüplerin Statik Ve Dinamik Yükler Altında Enerji Sönümleme Karakteristiklerinin Deneysel ve Sayısal Olarak Belirlenmesi (Master), Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 2014.
APA MERIÇ D, Gedikli H (2020). Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. , 1939 - 1956. 10.17341/gazimmfd.652878
Chicago MERIÇ DURSUN,Gedikli Hasan Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. (2020): 1939 - 1956. 10.17341/gazimmfd.652878
MLA MERIÇ DURSUN,Gedikli Hasan Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. , 2020, ss.1939 - 1956. 10.17341/gazimmfd.652878
AMA MERIÇ D,Gedikli H Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. . 2020; 1939 - 1956. 10.17341/gazimmfd.652878
Vancouver MERIÇ D,Gedikli H Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. . 2020; 1939 - 1956. 10.17341/gazimmfd.652878
IEEE MERIÇ D,Gedikli H "Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi." , ss.1939 - 1956, 2020. 10.17341/gazimmfd.652878
ISNAD MERIÇ, DURSUN - Gedikli, Hasan. "Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi". (2020), 1939-1956. https://doi.org/10.17341/gazimmfd.652878
APA MERIÇ D, Gedikli H (2020). Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 1939 - 1956. 10.17341/gazimmfd.652878
Chicago MERIÇ DURSUN,Gedikli Hasan Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no.4 (2020): 1939 - 1956. 10.17341/gazimmfd.652878
MLA MERIÇ DURSUN,Gedikli Hasan Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.35, no.4, 2020, ss.1939 - 1956. 10.17341/gazimmfd.652878
AMA MERIÇ D,Gedikli H Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(4): 1939 - 1956. 10.17341/gazimmfd.652878
Vancouver MERIÇ D,Gedikli H Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(4): 1939 - 1956. 10.17341/gazimmfd.652878
IEEE MERIÇ D,Gedikli H "Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35, ss.1939 - 1956, 2020. 10.17341/gazimmfd.652878
ISNAD MERIÇ, DURSUN - Gedikli, Hasan. "Değişken kalınlıklı tüplerin enerji sönümleme davranışlarının sayısal incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (2020), 1939-1956. https://doi.org/10.17341/gazimmfd.652878