Yıl: 2018 Cilt: 37 Sayı: 1 Sayfa Aralığı: 49 - 59 Metin Dili: Türkçe DOI: 10.30782/uluvfd.398947 İndeks Tarihi: 27-04-2021

Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi

Öz:
Bu makale genetik ve çevresel faktörlerin sığır eti renk özelliklerine etkileri hakkındaki güncel bilgilerin bir derlemesidir. Sığır eti üretim işletmelerinde, renk özellikleri bakımından tercih edilen et ürünlerinin üretilebilmesi için çevresel ve genetik faktörlerden oluşan mekanizmaların anlaşılabilmesi gerekmektedir. Bu bağlamda genotipik ve çevresel etkiler arasındaki interaksiyonların bu özelliği nasıl etkilediği hakkında genel bir bakış açısı sunulmuştur. Et rengi, tüketicilerin seçimini ve dolayısıyla ürünlerin ekonomik değerlerini belirlemektedir. Et renginin belirlenmesinde kullanılan güncel yöntemler, postmortem süreç ile çevresel ve LEP, CAPN, CAST, AKR1B1, GHR, MYOD, DNAH2, USP43, ANK1 aday genlerinden oluşan faktörlerin et rengi üzerine etkileri sunulmuştur. Bununla birlikte sığır yetiştiriciliğinde çevresel ve genetik faktörler arasındaki interaksiyonlara ait spesifik örnekler özetlenmiştir. Sonuç olarak, optimum et renginin elde edilebilmesi sadece kesim öncesi ve sonrası sürece ait nitelikler değil aynı zamanda moleküler mekanizmalara da bağlıdır
Anahtar Kelime:

-

Öz:
This paper is a review of current knowledge about environmental and genetic effects on beef colour. In order for beef production industriesto consistently produce preferred meat with respect to colour parameters, there must be an understanding of the mechanisms through envi ronmental factors, as well as the contribution of genetics. Thus, a brief overview of beef colour is presented to understand how genotype andenvironment may interact to influence this trait. Essentially, colour of beef can have significant effects on consumer’s choice and thus it candetermine the economical value of the product. The current methods for evaluating meat colour, the influence of postmortem process andenvironmental factors, as well as the candidate genes including LEP, CAPN, CAST, AKR1B1, GHR, MYOD, DNAH2, USP43, ANK1, on beefcolour are presented. In addition, specific examples of interactions between the processing environment and genetics in cattle breeding aresummarized. Consequently, achieving optimal beef colour will entirely depend not only on the quality of the pre- and post-slaughter processbut also on the molecular mechanisms.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abril M, Campo M, Önenç A, Sanudo C, Alberti P, Negueruela A. Beef colour evolution as a function of ultimate pH. Meat Sci, 58: 69-78, 2001.
  • Ahn DU, Olson D, Jo C, Chen X, Wu C, Lee J. Effect of muscle type, packaging, and irradiation on lipid oxidation, volatile production, and color in raw pork patties. Meat Sci, 49: 27-39, 1998.
  • Alcalde MJ, Negueruela AI. The influence of final conditions on meat colour in light lamb carcasses. Meat Sci, 57: 117-123, 2001.
  • Allais S, Journaux L, Leveziel H, Payet-Duprat N, Raynaud P, Hocquette JF, Lepetit J, Rousset S, Denoyelle C, Bernard-Capel C, Renand, G. Effects of polymorphisms in the calpastatin and mu-calpain genes on meat tenderness in 3 French beef breeds. J Anim Sci, 89: 1-11, 2011.
  • Anar Ş, Et ve Et Ürünleri Teknolojisi, 2. Baskı, Dora Yayıncılık, Bursa-Türkiye. 2012.
  • Ardicli S, Samli H, Dincel D, Soyudal B, Balci F. Individual and combined effects of CAPN1, CAST, LEP and GHR gene polymorphisms on carcass characteristics and meat quality in Holstein bulls. Arch Anim Breed, 60: 303-313, 2017.
  • Arslan A, Et muayenesi ve et ürünleri teknolojisi, 2. Baskı, Medipres, Malatya-Türkiye. 2002.
  • Bagnato P, Barone V, Giacomello E, Rossi D, Sorrentino V. Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J Cell Biol, 160: 245-253, 2003.
  • Barendse W, Harrison BE, Hawken RJ, Ferguson DM, Thompson JM, Thomas MB, Bunch RJ. Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. Genetics, 176: 2601-2610, 2007.
  • Bhuiyan M, Kim N, Cho Y, Yoon D, Kim KS, Jeon J, Lee J. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle. Livest Sci, 126: 292-297, 2009.
  • Borges BO, Curi RA, Baldi F, Feitosa FLB, Andrade WBF, Albuquerque LG, Oliveira HN, Chardulo LAL. Polymorphisms in candidate genes and their association with carcass traits and meat quality in Nellore cattle. Pesq Agropec Bras, 49: 364-371, 2014.
  • Buchanan FC, Fitzsimmons CJ, Van Kessel AG, Thue TD, Winkelman-Sim DC, Schmutz SM. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genet Selec Evol, 34: 105- 116, 2002.
  • Burrow H, Moore S, Johnston D, Barendse W, Bindon B. Quantitative and molecular genetic influences on properties of beef: a review. Animal Prod Sci, 41: 893-919, 2001.
  • Byun S, Zhou H, Forrest R, Frampton C, Hickford J. Association of the ovine calpastatin gene with birth weight and growth rate to weaning. Animal Genet, 39: 572-573, 2008.
  • Cafe L, McIntyre B, Robinson D, Geesink G, Barendse W, Greenwood P. Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 1. Growth, efficiency, temperament, and carcass characteristics. J Anim Sci, 88: 3047-3058, 2010a.
  • Cafe L, McIntyre B, Robinson D, Geesink G, Barendse W, Pethick D, Thompson J, Greenwood P. Production and processing studies on calpain-system gene markers for tenderness in Brahman cattle: 2. Objective meat quality. J Anim Sci, 88: 3059-3069, 2010b.
  • Casas E, White SN, Riley DG, Smith TP, Brenneman RA, Olson TA, Johnson DD, Coleman SW, Bennett GL, Chase CC. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J Anim Sci, 83: 13-9, 2005.
  • Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, Chase CC, Johnson DD, Smith TP. Effects of calpastatin and micro-calpain markers in beef cattle on tenderness traits. J Anim Sci, 84: 520-525, 2006.
  • Cho S, Park TS, Yoon DH, Cheong HS, Namgoong S, Park BL, Lee HW, Han CS, Kim EM, Cheong IC. Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. BMB Rep, 41: 29-34, 2008.
  • Devine C, Graafhuis A, Muir P, Chrystall B. The effect of growth rate and ultimate pH on meat quality of lambs. Meat Sci, 35: 63-77, 1993.
  • Dunne P, Keane M, O’Mara F, Monahan F, Moloney A. Colour of subcutaneous adipose tissue and M. longissimus dorsi of high index dairy and beef× dairy cattle slaughtered at two liveweights as bulls and steers. Meat Sci, 68: 97-106, 2004.
  • Ekiz B, Yilmaz A, Ozcan M, Kaptan C, Hanoglu H, Erdogan I, Yalcintan H. Carcass measurements and meat quality of Turkish Merino, Ramlic, Kivircik, Chios and Imroz lambs raised under an intensive production system. Meat Sci, 82: 64-70, 2009.
  • Ensembl genome browser, www.ensembl.org, Son erişim tarihi:26.02.2018.
  • Fiems L, De Campeneere S, De Smet S, Van de Voorde G, Vanacker J, Boucque CV. Relationship between fat depots in carcasses of beef bulls and effect on meat colour and tenderness. Meat Sci, 56: 41-47, 2000.
  • Garcia-Esteban M, Ansorena D, Gimeno O, Astiasaran I. Optimization of instrumental colour analysis in dry-cured ham. Meat Sci, 63: 287-292, 2003.
  • Geary T, McFadin E, MacNeil M, Grings E, Short R, Funston R, Keisler D. Leptin as a predictor of carcass composition in beef cattle. J Anim Sci, 81: 1-8, 2003.
  • Gerber AN, Klesert TR, Bergstrom DA, Tapscott SJ. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev, 11: 436-450, 1997.
  • Goll DE, Thompson VF, Taylor R, Christiansen J. Role of the calpain system in muscle growth. Biochimie, 74: 225- 237, 1992.
  • Henckel P, Andersson M, Holst S. Influence of stunning method on pH-decrease and meat quality. In: Proceedings International Congress Meat Science And Technology, 44: 1068-1069, 1998.
  • Hirokawa N, Noda Y, Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol, 10: 60-73, 1998.
  • Hochstrasser M. Ubiquitin-dependent protein degradation. Annu Rev Genet, 30: 405-439, 1996.
  • Holzbaur E, Vallee R. Dyneins: molecular structure and cellular function. Annu Rev Cell Biol, 10: 339-372, 1994.
  • Jiang H, Lucy MC. Variants of the 5’-untranslated region of the bovine growth hormone receptor mRNA: isolation, expression and effects on translational efficiency. Gene, 265: 45-53, 2001.
  • Joseph P, Suman SP, Rentfrow G, Li S, Beach CM. Proteomics of muscle-specific beef color stability. J Agric Food Chem, 60: 3196-3203, 2012.
  • Juszczuk-Kubiak E, Rosochacki SJ, Wicinska K, Szreder TS. A novel RFLP/AluI polymorphism of the bovine calpastatin (CAST) gene and its association with selected traits of beef. Anim Sci Pap Rep, 22: 195-204, 2004.
  • Kappes S, Keele JW, Stone RT, McGraw RA, Sonstegard TS, Smith T, Lopez-Corrales NL, Beattie CW. A second-generation linkage map of the bovine genome. Genome Res, 7: 235-249, 1997.
  • King RW, Deshaies RJ, Peters JM, Kirschner MW. How proteolysis drives the cell cycle. Science, 274: 1652-1659, 1996.
  • Lagonigro R, Wiener P, Pilla F, Woolliams J, Williams J. A new mutation in the coding region of the bovine leptin gene associated with feed intake. Anim Genet, 34: 371-374, 2003.
  • Li X, Ekerljung M, Lundstrom K, Lunden A. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci 94: 153-158, 2013.
  • Liu LQ, Ilaria R, Kingsley PD, Iwama A, van Etten RA, Palis J, Zhang DE. A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation. Mol Cell Biol, 19: 3029-3038, 1999.
  • Liu X, Usman T, Wang Y, Wang Z, Xu X, Wu M, Zhang Y, Zhang X, Li Q, Liu L, Shi W, Qin C, Geng F, Wang C, Tan R, Huang X, Liu A, Wu H, Tan S, Yu Y. Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. Asian-Australas J Anim Sci, 28: 467-75, 2015.
  • Lucy M, Johnsson G, Shibuya H, Boyd C, Herring W, Werin M. Rapid communication: polymorphic (GT) n microsatellite in the bovine somatotropin receptor gene promoter. J Anim Sci, 76: 2209-2210, 1998.
  • Luo W, Cheng D, Chen S, Wang L, Li Y, Ma X, Song X, Liu X, Li W, Liang J. Genome-wide association analysis of meat quality traits in a porcine Large White× Minzhu intercross population. Int J Biol Sci, 8: 580, 2012.
  • Mancini R, Hunt M. Current research in meat color. Meat Sci, 71: 100-121, 2005.
  • Mancini RA, Ramanathan R. Effects of postmortem storage time on color and mitochondria in beef. Meat Sci, 98: 65-70, 2014.
  • Mazzucco JP, Melucci LM, Villarreal EL, Mezzadra CA, Soria L, Corva P, Motter MM, Schor A, Miquel MC. Effect of ageing and μ-calpain markers on meat quality from Brangus steers finished on pasture. Meat Sci, 86: 878-882, 2010.
  • Melucci LM, Panarace M, Feula P, Villarreal EL, Grigioni G, Carduza F, Soria L, Mezzadra CA, Arceo M, Mazzucco JP. Genetic and management factors affecting beef quality in grazing Hereford steers. Meat Sci, 92: 768-774, 2012.
  • Moody D, Pomp D, Barendse W, Womack J. Assignment of the growth hormone receptor gene to bovine chromosome 20 using linkage analysis and somatic cell mapping. Anim Genet, 26, 341-343, 1995.
  • Nunes J, Piquerez M, Pujadas L, Armstrong E, Fernandez A, Lecumberry F. Beef quality parameters estimation using ultrasound and color images. BMC Bioinformatics, 16: S6, 2015.
  • O’sullivan M, Byrne D, Martens H, Gidskehaug L, Andersen H, Martens M. Evaluation of pork colour: prediction of visual sensory quality of meat from instrumental and computer vision methods of colour analysis. Meat Sci, 65: 909-918, 2003.
  • Ouali A, Talmant A. Calpains and calpastatin distribution in bovine, porcine and ovine skeletal muscles. Meat Sci, 28: 331-348, 1990.
  • Önenç A, Kaya A. Sığır Karkaslarında Etlenme ve Yağlanma Durumunun Koyu Renkli Karkas Oluşumuna Etkisinin Saptanması Üzerine Bir Araştırma. Ege Üniversitesi Ziraat Fakültesi Dergisi, 40: 73-80, 2003.
  • Pereira PMCC, Vicente AFRB. Meat nutritional composition and nutritive role in the human diet. Meat Sci, 93: 586-592, 2013.
  • Petrash J. All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci, 61: 737-749, 2004.
  • Pinto LF, Ferraz JB, Pedrosa VB, Eler JP, Meirelles FV, Bonin MN, Rezende FM, Carvalho ME, Cucco DC, Silva RC. Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genet Mol Res 10: 2057-64, 2011.
  • Pipek P, Haberl A, Jelenikova J. Influence of slaughterhouse handling on the quality of beef carcasses. Czech J Anim Sci, 48: 371-378, 2003.
  • Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA, 103: 8721-8726, 2006.
  • Reardon W, Mullen A, Sweeney T, Hamill R. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Sci, 86: 270-275, 2010.
  • Schwartzbauer G, Menon RK. Regulation of growth hormone receptor gene expression. Mol Genet Metab, 63: 243- 253, 1998.
  • Shackelford S, Koohmaraie M, Wheeler T, Cundiff L, Dikeman M. Effect of biological type of cattle on the incidence of the dark, firm, and dry condition in the longissimus muscle. J Anim Sci, 72: 337-343, 1994.
  • Shin S, Chung E. Association of SNP marker in the leptin gene with carcass and meat quality traits in Korean cattle. Asian-Australas J Anim Sci, 20: 1-6, 2007.
  • Silva D, Crispim B, Silva L, Oliveira J, Siqueira F, Seno L, Grisolia A. Genetic variations in the leptin gene associated with growth and carcass traits in Nellore cattle. Genet Mol Biol, 13: 3002-3012, 2014.
  • Simek J, Vorlova L, Malota L, Steinhauserova I, Steinhauser L. Post-mortal changes of pH value and lactic acid content in the muscle of pigs and bulls. Czech J Anim Sci 48: 295- 299, 2003.
  • Smith TP, Casas E. Single nucleotide polymorphism markers in the bovine CAPN1 gene to identify meat tenderness. Patent No: US7238479 B2. The United States Of America As Represented By The Secretary Of Agriculture, USA, 2007.
  • Stelzleni A, Patten L, Johnson D, Calkins CR, Gwartney B. Benchmarking carcass characteristics and muscles from commercially identified beef and dairy cull cow carcasses for Warner-Bratzler shear force and sensory attributes. J Anim Sci, 85: 2631-2638, 2007.
  • Tait R, Shackelford S, Wheeler T, King D, Keele J, Casas E, Smith T, Bennett G. CAPN1, CAST, and DGAT1 genetic effects on preweaning performance, carcass quality traits, nd residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization. J Anim Sci, 92: 5382-5393, 2014.
  • Tian J, Zhao Z, Zhang L, Zhang Q, Yu Z, Li J, Yang R. Association of the leptin gene E2-169T> C and E3-299T> A mutations with carcass and meat quality traits of the Chinese Simmental-cross steers. Gene, 518: 443-448, 2013.
  • Velarde A, Gispert M, Diestre A, Manteca X. Effect of electrical stunning on meat and carcass quality in lambs. Meat Sci, 63: 35-38, 2003.
  • Warner R, Greenwood P, Pethick D, Ferguson D. Genetic and environmental effects on meat quality. Meat Sci, 86: 171-183, 2010.
  • Wegner J, Albrecht E, Fiedler I, Teuscher F, Papstein H, Ender K. Growth-and breed-related changes of muscle fiber characteristics in cattle. J Anim Sci, 78: 1485-1496, 2000.
  • Weintraub, H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell, 75: 1241-1244, 1993.
  • Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta-Proteins and Proteomics, 1703: 203-212, 2005.
  • Wu W, Fu Y, Therkildsen M, Li XM, Dai RT. Molecular understanding of meat quality through application of proteomics. Food Rev Int, 31: 13-28, 2015.
  • Yılmaz A, Ekiz B, Soysal M, Yılmaz İ, Yalçıntan H. Certain carcass and meat quality characteristics of Anatolian Water Buffalos. In: 8th Global Conference on the Conservation of Animal Genetic Resources, 149, 2011
APA ARDIÇLI S (2018). Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. , 49 - 59. 10.30782/uluvfd.398947
Chicago ARDIÇLI Sena Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. (2018): 49 - 59. 10.30782/uluvfd.398947
MLA ARDIÇLI Sena Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. , 2018, ss.49 - 59. 10.30782/uluvfd.398947
AMA ARDIÇLI S Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. . 2018; 49 - 59. 10.30782/uluvfd.398947
Vancouver ARDIÇLI S Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. . 2018; 49 - 59. 10.30782/uluvfd.398947
IEEE ARDIÇLI S "Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi." , ss.49 - 59, 2018. 10.30782/uluvfd.398947
ISNAD ARDIÇLI, Sena. "Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi". (2018), 49-59. https://doi.org/10.30782/uluvfd.398947
APA ARDIÇLI S (2018). Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. Uludağ Üniversitesi Veteriner Fakültesi Dergisi, 37(1), 49 - 59. 10.30782/uluvfd.398947
Chicago ARDIÇLI Sena Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. Uludağ Üniversitesi Veteriner Fakültesi Dergisi 37, no.1 (2018): 49 - 59. 10.30782/uluvfd.398947
MLA ARDIÇLI Sena Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. Uludağ Üniversitesi Veteriner Fakültesi Dergisi, vol.37, no.1, 2018, ss.49 - 59. 10.30782/uluvfd.398947
AMA ARDIÇLI S Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. Uludağ Üniversitesi Veteriner Fakültesi Dergisi. 2018; 37(1): 49 - 59. 10.30782/uluvfd.398947
Vancouver ARDIÇLI S Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi. Uludağ Üniversitesi Veteriner Fakültesi Dergisi. 2018; 37(1): 49 - 59. 10.30782/uluvfd.398947
IEEE ARDIÇLI S "Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi." Uludağ Üniversitesi Veteriner Fakültesi Dergisi, 37, ss.49 - 59, 2018. 10.30782/uluvfd.398947
ISNAD ARDIÇLI, Sena. "Genetik ve Postmortem Mekanizmaların Sığır Eti Renk Özellikleri Üzerine Etkisi". Uludağ Üniversitesi Veteriner Fakültesi Dergisi 37/1 (2018), 49-59. https://doi.org/10.30782/uluvfd.398947