Yıl: 2020 Cilt: 35 Sayı: 4 Sayfa Aralığı: 492 - 496 Metin Dili: İngilizce DOI: 10.5505/tjo.2020.2328 İndeks Tarihi: 10-06-2021

The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors

Öz:
Immune checkpoint inhibitors (ICI) are recently introduced in the management of various cancers. There are three main immunotargets as follows: Cytotoxic T-lymphocyte antigen-4 (CTLA4), programmed death 1 (PD-1) and programmed death ligand-1 (PD-L1). These three targets are under investigation for therapeutic, predictive and prognostic purposes in genitourinary cancers. There is a need for predictive biomarkers of immunotherapy to optimize treatment, to limit side-effects and to reduce the costs of therapy. This review focuses on the role of pathologic applications in the selection of patients with genitourinary cancer who are potentially responsive to immunotherapy. PD-L1 expression by immunohistochemistry, tumor mutation burden and microsatellite instability status are mainly discussed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Montironi R, Santoni M, Cheng L, Lopez-Beltran A, Massari F, Matrana MR, et al. An Overview of Emerging Immunotargets of Genitourinary Tumors. Curr Drug Targets 2016;17(7):750–6.
  • 2. Mehta K, Patel K, Parikh RA. Immunotherapy in genitourinary malignancies. J Hematol Oncol 2017;10(1):95.
  • 3. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol 2017;8:561.
  • 4. Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 2012;1(8):1223–5.
  • 5. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372(21):2018–28.
  • 6. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med 2016;375(19):1856–67.
  • 7. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 2015;373(19):1803–13.
  • 8. Sharma P, Callahan MK, Bono P, Kim J, Spiliopoulou P, Calvo E, et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 2016;17(11):1590–8.
  • 9. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med 2016;375(19):1823–33.
  • 10.Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016;387(10027):1540–50.
  • 11.Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med 2017;376(11):1015–26.
  • 12.Hansen AR, Siu LL. PD-L1 Testing in Cancer: Challenges in Companion Diagnostic Development. JAMA Oncol 2016;2(1):15–6.
  • 13.Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, et al. Safety and Efficacy of Durvalumab (MEDI4736), an Anti-Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients With Advanced Urothelial Bladder Cancer. J Clin Oncol 2016;34(26):3119–25.
  • 14.Apolo AB, Infante JR, Balmanoukian A, Patel MR, Wang D, Kelly K, et al. Avelumab, an Anti-Programmed Death-Ligand 1 Antibody, In Patients With Refractory Metastatic Urothelial Carcinoma: Results From a Multicenter, Phase Ib Study. J Clin Oncol 2017;35(19):2117–24.
  • 15.Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387(10031):1909–20.
  • 16.Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014;515(7528):558–62.
  • 17.Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 2017;389(10064):67–76.
  • 18.Balar AV, Castellano D, O'Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol 2017;18(11):1483–92.
  • 19.Mazza C, Escudier B, Albiges L. Nivolumab in renal cell carcinoma: latest evidence and clinical potential. Ther Adv Med Oncol 2017;9(3):171–81.
  • 20.Xu F, Xu L, Wang Q, An G, Feng G, Liu F. Clinicopathological and prognostic value of programmed death ligand-1 (PD-L1) in renal cell carcinoma: a meta-analysis. Int J Clin Exp Med 2015;8(9):14595–603.
  • 21.Choueiri TK, Figueroa DJ, Fay AP, Signoretti S, Liu Y, Gagnon R, et al. Correlation of PD-L1 tumor expression and treatment outcomes in patients with renal cell carcinoma receiving sunitinib or pazopanib: results from COMPARZ, a randomized controlled trial. Clin Cancer Res 2015;21(5):1071–7.
  • 22.Callea M, Albiges L, Gupta M, Cheng SC, Genega EM, Fay AP, et al. Differential Expression of PD-L1 between Primary and Metastatic Sites in Clear-Cell Renal Cell Carcinoma. Cancer Immunol Res 2015;3(10):1158– 64.
  • 23.Hirayama Y, Gi M, Yamano S, Tachibana H, Okuno T, Tamada S, et al. Anti-PD-L1 treatment enhances antitumor effect of everolimus in a mouse model of renal cell carcinoma. Cancer Sci 2016;107(12):1736–44.
  • 24.Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348(6230):124–8.
  • 25.Ilie M, Hofman V, Dietel M, Soria JC, Hofman P. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch 2016;468(5):511–25.
  • 26.Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther 2015;14(4):847–56.
  • 27.Isaacsson Velho P, Antonarakis ES. PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev Clin Pharmacol 2018;11(5):475–86.
  • 28.Haffner MC, Guner G, Taheri D, Netto GJ, Palsgrove DN, Zheng Q, et al. Comprehensive Evaluation of Programmed Death-Ligand 1 Expression in Primary and Metastatic Prostate Cancer. Am J Pathol 2018;188(6):1478–85.
  • 29.De Bono JS, Goh JC, Ojamaa K, Piulats Rodriguez JM, Drake CG, Hoimes CJ, et al. KEYNOTE-199: Pembrolizumab (pembro) for docetaxel-refractory metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2018;36(15_suppl):5007.
  • 30.Boudadi K, Suzman DL, Anagnostou V, Fu W, Luber B, Wang H, et al. Ipilimumab plus nivolumab and DNA-repair defects in AR-V7-expressing metastatic prostate cancer. Oncotarget 2018;9(47):28561–71.
  • 31.Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 2019;30(1):44–56.
  • 32.Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 2015;350(6257):207–11.
  • 33.Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol 2017;18(8):1009–21.
  • 34.Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357(6349):409–13.
  • 35.Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 2017;9(1):34.
  • 36.Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clin Cancer Res 2019;25(13):3753–8.
  • 37.Ericson KM, Isinger AP, Isfoss BL, Nilbert MC. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma. BMC Cancer 2005;5:23.
  • 38.Zhu J, Armstrong AJ, Friedlander TW, Kim W, Pal SK, George DJ, et al. Biomarkers of immunotherapy in urothelial and renal cell carcinoma: PD-L1, tumor mutational burden, and beyond. J Immunother Cancer 2018;6(1):4.
APA Ozluk Y (2020). The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. , 492 - 496. 10.5505/tjo.2020.2328
Chicago Ozluk Yasemin The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. (2020): 492 - 496. 10.5505/tjo.2020.2328
MLA Ozluk Yasemin The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. , 2020, ss.492 - 496. 10.5505/tjo.2020.2328
AMA Ozluk Y The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. . 2020; 492 - 496. 10.5505/tjo.2020.2328
Vancouver Ozluk Y The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. . 2020; 492 - 496. 10.5505/tjo.2020.2328
IEEE Ozluk Y "The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors." , ss.492 - 496, 2020. 10.5505/tjo.2020.2328
ISNAD Ozluk, Yasemin. "The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors". (2020), 492-496. https://doi.org/10.5505/tjo.2020.2328
APA Ozluk Y (2020). The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. Türk Onkoloji Dergisi, 35(4), 492 - 496. 10.5505/tjo.2020.2328
Chicago Ozluk Yasemin The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. Türk Onkoloji Dergisi 35, no.4 (2020): 492 - 496. 10.5505/tjo.2020.2328
MLA Ozluk Yasemin The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. Türk Onkoloji Dergisi, vol.35, no.4, 2020, ss.492 - 496. 10.5505/tjo.2020.2328
AMA Ozluk Y The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. Türk Onkoloji Dergisi. 2020; 35(4): 492 - 496. 10.5505/tjo.2020.2328
Vancouver Ozluk Y The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors. Türk Onkoloji Dergisi. 2020; 35(4): 492 - 496. 10.5505/tjo.2020.2328
IEEE Ozluk Y "The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors." Türk Onkoloji Dergisi, 35, ss.492 - 496, 2020. 10.5505/tjo.2020.2328
ISNAD Ozluk, Yasemin. "The Role of Pathology in Predicting ImmunotherapyResponse in Urogenital Tumors". Türk Onkoloji Dergisi 35/4 (2020), 492-496. https://doi.org/10.5505/tjo.2020.2328