Yıl: 2021 Cilt: 11 Sayı: 1 Sayfa Aralığı: 57 - 66 Metin Dili: Türkçe DOI: 10.26650/experimed.2021.831169 İndeks Tarihi: 03-12-2021

Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü

Öz:
Nörogenez, nöral kök hücrelerin (NKH) bölünme, göç etme ve farklılaşma süreçlerinin bütününü oluşturmaktadır. Lateral ventrikülün subventriküler bölgesi (SVZ) ve hipokampus dentat girus (DG)’daki subgranüler bölge (SGZ) olmak üzere iki farklı nişte gerçekleşmektedir. Nörotrofik faktörler, NKH ve nöral progenitor hücrelerin migrasyon, proliferasyon ve farklılaşmasında rol oynar. Ayrıca, NKH’lerin hasarlı dokuda, nöral hücrelerin yeniden yapılanması, nöral plastisite ve anjiogenezi düzenleyici etkileri olduğu gösterilmiştir. Yetişkin nörogenezinde ise nörotrofik faktör kombinasyonlarının serebrovasküler, nörodejeneratif, onkolojik hastalıklar ve travma sonrası oluşan inflamatuvar hasar tedavisinde önemli rolü olduğu bilinmektedir. Bu derlemede, nörotrofik faktörlerin NKH’ler üzerindeki modüle edici etkisi ve potansiyel terapötik uygulamalarında preklinik ve klinik çalışmaları içeren güncel literatürler biraraya getirilmiştir. Bu alanda çalışma yapan araştırmacı ve hekimlere fayda sağlayacak güncel bilgiler içermektedir.
Anahtar Kelime:

The Role of Growth Factors in Adult Neurogenesis and Neurodegenerative Diseases

Öz:
Neurogenesis is the combined processes of division, migration and differentiation of neural stem cells (NSCs). The two different locations: the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) in the hippocampus dentate gyrus (DG), provide a niche environment for neurogenesis. Neurotrophic factors have roles on migration, proliferation and differentiation of NSC and neural progenitor cells. Studies have shown that NSCs have regulatory effects on neural cell rearrangement, neural plasticity and angiogenesis in damaged tissue. In adult neurogenesis, combinations of neurotrophic factors play an important role in the treatment of cerebrovascular, neurodegenerative, oncological diseases and post-traumatic inflammatory damage. In this review, current literature including pre-clinical and clinical studies for the modulating effect of neurotrophic factors on NSCs and their potential therapeutic treatment applications are brought together. It contains up-to-date information that would be beneficial for researchers and physicians working in this field.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Fortier, Lisa A. Stem cells: classifications, controversies, and clinical applications. Vet Surg 2005; 34(5): 415-23. [CrossRef ]
  • 2. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 2013; 14(6) :329-40. [CrossRef ]
  • 3. Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol 2015; 62(3): 329-37. [CrossRef ]
  • 4. Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA. The new stem cell biology: something for everyone. Mol Pathol 2003; 56(2): 86-96. [CrossRef ]
  • 5. Ralston A, Rossant J. The genetics of induced pluripotency. Reproduction 2010; 139(1): 35-44. [CrossRef ]
  • 6. Bjornsson CS, Apostolopoulou M, Tian Y, Temple S. It takes a village: constructing the neurogenic niche. Dev Cell 2015; 32(4): 435- 46. [CrossRef ]
  • 7. Lepousez G, Lledo PM. Life and death decision in adult neurogenesis: in praise of napping. Neuron 2011; 71(5): 768-71. [CrossRef ]
  • 8. M.R. Akins, A.D.R. Garcia, Neurogenesis in the Adult Brain. Encyclopedia of Cell Biology 2016; 4: 134-40. [CrossRef ]
  • 9. Altman J. Are new neurons formed in the brains of adult mammals? Science 1962; 135(3509): 1127-8. [CrossRef ]
  • 10. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124: 319-35. [CrossRef ]
  • 11. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969; 137(4): 433-57. [CrossRef ]
  • 12. Sun W, Kim H, Moon Y. Control of neuronal migration through rostral migration stream in mice. Anatomy & Cell Biology 2010; 43: 269-79. [CrossRef ]
  • 13. Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003; 9(4): 439-47. [CrossRef ]
  • 14. Bond AM, Ming GL, Song H. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell 2015; 17: 385-95. [CrossRef ]
  • 15. Gage FH. Mammalian neural stem cells. Science 2000; 287(5457): 1433-8. [CrossRef ]
  • 16. Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8(5): a018820. [CrossRef ]
  • 17. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 2006; 26(30): 7907-18. [CrossRef]
  • 18. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 2002; 16(9): 1681-9. [CrossRef]
  • 19. Doetsch F, Alvarez-Buylla A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A. 1996; 93(25): 14895-900. [CrossRef ]
  • 20. Hatanaka Y, Zhu Y, Torigoe M, Kita Y, Murakami F. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc Jpn Acad Ser B Phys Biol Sci 2016; 92(1): 1-19. [CrossRef ]
  • 21. Bonfanti L, Theodosis DT. Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience 1994; 62(1): 291-305. [CrossRef ]
  • 22. Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H. Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 2000;20(4):1446-57. [CrossRef ]
  • 23. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science 1994; 264(5162): 1145-8. [CrossRef]
  • 24. Doetsch F, García-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997; 17(13): 5046-61. [CrossRef ]
  • 25. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 2014; 82(3): 545-59. [CrossRef ]
  • 26. Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 1997; 18(5): 779-91. [CrossRef ]
  • 27. Kheirbek MA. Finding the Roots of Adult Neurogenesis. Cell 2015; 161(7): 1500-2. [CrossRef ]
  • 28. Alvarez-Buylla A, García-Verdugo JM, Mateo AS, Merchant-Larios H. Primary neural precursors and intermitotic nuclear migration in the ventricular zone of adult canaries. J Neurosci 1998; 18(3): 1020-37. [CrossRef ]
  • 29. García-Verdugo JM, Doetsch F, Wichterle H, Lim DA, Alvarez-Buylla A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 1998; 36(2): 234-48. [CrossRef ]
  • 30. Gonzalez-Perez O, Alvarez-Buylla A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev 2011;67(1-2):147-56. [CrossRef ]
  • 31. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009; 32:149-84. [CrossRef ]
  • 32. Zhang J, Jiao J. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis. Biomed Res Int 2015; 2015: 727542. [CrossRef ]
  • 33. Jankovski A, Sotelo C. Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol 1996; 371(3): 376-96. [CrossRef ]
  • 34. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008; 3(3): 279-88. [CrossRef ]
  • 35. Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 2011; 3(5): a004960. [CrossRef ]
  • 36. O'Rourke NA, Sullivan DP, Kaznowski CE, Jacobs AA, McConnell SK. Tangential migration of neurons in the developing cerebral cortex. Development 1995; 121(7): 2165-76.
  • 37. Dennie D, Louboutin JP, Strayer DS. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells 2016; 8(4): 136-57. [CrossRef ]
  • 38. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M. Signaling at the gliovascular interface. J Neurosci 2003; 23(27): 9254-62. [CrossRef ]
  • 39. Lalli G. Extracellular signals controlling neuroblast migration in the postnatal brain. Adv Exp Med Biol 2014; 800: 149-80. [CrossRef ]
  • 40. Choe Y, Pleasure SJ, Mira H. Control of Adult Neurogenesis by Short-Range Morphogenic-Signaling Molecules. Cold Spring Harb Perspect Biol 2015; 8(3): a018887. [CrossRef ]
  • 41. Garzón-Muvdi T, Quiñones-Hinojosa A. Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J 2009; 51(1): 3-23. [CrossRef ]
  • 42. Cole AE, Murray SS, Xiao J. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury. Stem Cells Int 2016; 2016: 9260592. [CrossRef ]
  • 43. Riquelme PA, Drapeau E, Doetsch F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 2008; 363(1489): 123-37. [CrossRef ]
  • 44. Ihrie RA, Alvarez-Buylla A. Cells in the astroglial lineage are neural stem cells. Cell Tissue Res 2008; 331(1): 179-91. [CrossRef ]
  • 45. Seri B, García-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez- Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 2004; 478(4): 359- 78. [CrossRef ]
  • 46. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002; 415(6875): 1030-4. [CrossRef ]
  • 47. Abbott LC, Nigussie F. Adult neurogenesis in the mammalian dentate gyrus. Anat Histol Embryol 2020; 49(1): 3-16. [CrossRef ]
  • 48. Laplagne DA, Espósito MS, Piatti VC, Morgenstern NA, Zhao C, van Praag H, et al. Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol 2006; 4(12): e409. [CrossRef ]
  • 49. Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits 2017; 11: 74. [CrossRef ]
  • 50. Kazanis I. Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expectations in the era of regenerative biology. Neuroscientist 2012; 18(1): 15-27. [CrossRef ]
  • 51. Rusznák Z, Henskens W, Schofield E, Kim WS, Fu Y. Adult Neurogenesis and Gliogenesis: Possible Mechanisms for Neurorestoration. Exp Neurobiol 2016; 25(3): 103-12. [CrossRef ]
  • 52. Lu QR, Cai L, Rowitch D, Cepko CL, Stiles CD. Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuronal survival in developing mouse cortex. Nat Neurosci 2001; 4(10): 973-4. [CrossRef ]
  • 53. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 2014; 1840(8): 2506-19. [CrossRef ]
  • 54. Falcão AM, Marques F, Novais A, Sousa N, Palha JA, Sousa JC. The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci 2012; 6: 34. [CrossRef ]
  • 55. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 2005; 5(4): 401-6. [CrossRef ]
  • 56. Wittko IM, Schänzer A, Kuzmichev A, Schneider FT, Shibuya M, Raab S, et al. VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 2009; 29(27): 8704-14. [CrossRef ]
  • 57. Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis 2010; 6(2): 107-14. [CrossRef ]
  • 58. Kermani P, Hempstead B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 2007; 17(4): 140-3. [CrossRef ]
  • 59. Delgado AC, Ferrón SR, Vicente D, Porlan E, Perez-Villalba A, Trujillo CM, et al. Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 2014; 83(3): 572-85. [CrossRef ]
  • 60. Goldberg JS, Hirschi KK. Diverse roles of the vasculature within the neural stem cell niche. Regen Med 2009; 4(6): 879-97. [CrossRef ]
  • 61. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 2002; 99(18): 11946-50. [CrossRef ]
  • 62. Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2014; 9(2): 168-81. [CrossRef ]
  • 63. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 2006; 51(2): 187-99. [CrossRef]
  • 64. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 1999; 13(6): 450-64. [CrossRef ]
  • 65. Marie C, Pedard M, Quirié A, Tessier A, Garnier P, Totoson P, et al. Brain-derived neurotrophic factor secreted by the cerebral endothelium: A new actor of brain function? J Cereb Blood Flow Metab. 2018; 38(6): 935-49. [CrossRef ]
  • 66. Suh H, Deng W, Gage FH. Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 2009; 25: 253-75. [CrossRef ]
  • 67. Zhang H, Fang X, Huang D, Luo Q, Zheng M, Wang K, et al. Erythropoietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol Med Rep 2018; 17(1): 264-72. [CrossRef ]
  • 68. Benito M, Valverde AM, Lorenzo M. IGF-I: a mitogen also involved in differentiation processes in mammalian cells. Int J Biochem Cell Biol 1996; 28(5): 499-510. [CrossRef ]
  • 69. Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin- containing neurons. Neuron 1995; 14(4): 717-30. [CrossRef ]
  • 70. Lunn JS, Sakowski SA, McGinley LM, Pacut C, Hazel TG, et al. Autocrine production of IGF-I increases stem cell-mediated neuroprotection. Stem Cells 2015; 33(5): 1480-9. [CrossRef ]
  • 71. Carlson SW, Madathil SK, Sama DM, Gao X, Chen J, Saatman KE. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol 2014; 73(8): 734-46. [CrossRef ]
  • 72. Liu J, Spéder P, Brand AH. Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes Obes Metab 2014; 16(Suppl 1): 16-20. [CrossRef ]
  • 73. de Pablo F, de la Rosa EJ. The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 1995; 18(3): 143-50. [CrossRef ]
  • 74. Supeno NE, Pati S, Hadi RA, Ghani AR, Mustafa Z, Abdullah JM, et al. IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci 2013; 10(5): 522-31. [CrossRef ]
  • 75. Erickson RI, Paucar AA, Jackson RL, Visnyei K, Kornblum H. Roles of insulin and transferrin in neural progenitor survival and proliferation. J Neurosci Res 2008; 86(8): 1884-94. [CrossRef ]
  • 76. Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96(3): 1025-69. [CrossRef]
  • 77. Galvez-Contreras AY, Gonzalez-Castaneda RE, Luquin S, Gonzalez- Perez O. Role of fibroblast growth factor receptors in astrocytic stem cells. Curr Signal Transduct Ther 2012; 7(1): 81-6. [CrossRef ]
  • 78. Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 2010; 7(2): 163- 73. [CrossRef ]
  • 79. Türeyen K, Vemuganti R, Bowen KK, Sailor KA, Dempsey RJ. EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery 2005; 57(6): 1254-63; discussion 1254-63. [CrossRef ]
  • 80. Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol 2014; 9(2): 92-101. [CrossRef ]
  • 81. Iwata T, Hevner RF. Fibroblast growth factor signaling in development of the cerebral cortex. Dev Growth Differ 2009; 51(3): 299- 323. [CrossRef ]
  • 82. Werner S, Unsicker K, von Bohlen und Halbach O. Fibroblast growth factor-2 deficiency causes defects in adult hippocampal neurogenesis, which are not rescued by exogenous fibroblast growth factor-2. J Neurosci Res 2011; 89(10): 1605-17. [CrossRef ]
  • 83. Newman MP, Féron F, Mackay-Sim A. Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 2000; 99(2): 343-50. [CrossRef ]
  • 84. Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, et al. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. Elife 2013; 2: e00362. [CrossRef ]
  • 85. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 1996; 16(3): 1091-100. [CrossRef ]
  • 86. Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 2001; 21(18): 7194-202. [CrossRef ]
  • 87. Kim SE, Lee JJ, Song YS. Neurodegenerative diseases. In Clinical PET and PET/CT: Principles and Applications. Springer New York; 2013; p. 151-173. [CrossRef ]
  • 88. Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 2017; 174(1): 93-112. [CrossRef ]
  • 89. Woolley JD, Khan BK, Murthy NK, Miller BL, Rankin KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011; 72(2): 126-33. [CrossRef ]
  • 90. Dickson DW. Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2012; 2(8): a009258. [CrossRef ]
  • 91. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener 2019; 14(1): 32. [CrossRef ]
  • 92. Nopoulos PC. Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues Clin Neurosci 2016; 18(1): 91-8. [CrossRef ]
  • 93. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 2020; 19(1): 15-33. [CrossRef ]
  • 94. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 2015; 29(2): 97-115. [CrossRef ]
  • 95. Weissmiller AM, Wu C. Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener 2012; 1(1): 14. [CrossRef ]
  • 96. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 1998; 36(2): 287-306. [CrossRef ]
  • 97. Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of Neurotrophic Factors in Glial Cells in the Central Nervous System: Expression and Properties in Neurodegeneration and Injury. Front Physiol 2019; 10: 486. [CrossRef ]
  • 98. Numakawa T, Odaka H, Adachi N. Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int J Mol Sci 2018; 19(11): 3650. [CrossRef ]
  • 99. Gharami K, Xie Y, An JJ, Tonegawa S, Xu B. Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington's disease phenotypes in mice. J Neurochem 2008; 105(2): 369-79. [CrossRef ]
  • 100. Carradori D, Eyer J, Saulnier P, Préat V, des Rieux A. The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 2017; 123: 77- 91. [CrossRef ]
  • 101. Schindowski K, Belarbi K, Buée L. Neurotrophic factors in Alzheimer's disease: role of axonal transport. Genes Brain Behav 2008;7 Suppl 1(1): 43-56. [CrossRef ]
  • 102. Regensburger M, Prots I, Winner B. Adult hippocampal neurogenesis in Parkinson's disease: impact on neuronal survival and plasticity. Neural Plast 2014; 2014: 454696. [CrossRef ]
  • 103. Tang JJ, Podratz JL, Lange M, Scrable HJ, Jang MH, Windebank AJ. Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain. Mol Brain 2017; 10(1): 23. [CrossRef ]
  • 104. Segura I, De Smet F, Hohensinner PJ, Ruiz de Almodovar C, Carmeliet P. The neurovascular link in health and disease: an update. Trends Mol Med 2009; 15(10): 439-51. [CrossRef ]
  • 105. Lee, Bun-Hee, and Yong-Ku Kim. Increased plasma VEGF levels in major depressive or manic episodes in patients with mood disorders. Journal of Affective Disorders 2012; 136(1/2): 181-4. [CrossRef ]
  • 106. Giuffrida ML, Copani A, Rizzarelli E. A promising connection between BDNF and Alzheimer's disease. Aging (Albany NY). 2018; 10(8): 1791-2. [CrossRef ]
  • 107. Pandini G, Satriano C, Pietropaolo A, Gianì F, Travaglia A, La Mendola D, et al. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci 2016; 10: 569. [CrossRef ]
  • 108. Eyjolfsdottir H, Eriksdotter M, Linderoth B, Lind G, Juliusson B, Kusk P, et al. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer's disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res Ther 2016; 8(1): 30. [CrossRef ]
  • 109. Mitra S, Behbahani H, Eriksdotter M. Innovative Therapy for Alzheimer's Disease-With Focus on Biodelivery of NGF. Front Neurosci 2019; 13: 38. [CrossRef ]
  • 110. Suzuki K, Suzuki S, Ishii Y, Fujita H, Matsubara T, Okamura M, et al. Serum insulin-like growth factor-1 levels in neurodegenerative diseases. Acta Neurol Scand 2019; 139(6): 563-7. [CrossRef ]
  • 111. Niu J, Xie J, Guo K, Zhang X, Xia F, Zhao X, et al. Efficient treatment of Parkinson's disease using ultrasonography-guided rhFGF20 proteoliposomes. Drug Deliv 2018; 25(1): 1560-9. [CrossRef ]
  • 112. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21(3): 1170. [CrossRef ]
  • 113. Whone AL, Boca M, Luz M, Woolley M, Mooney L, Dharia S, et al. Extended Treatment with Glial Cell Line-Derived Neurotrophic Factor in Parkinson's Disease. J Parkinsons Dis 2019; 9(2): 301-13. [CrossRef ]
  • 114. Huttunen HJ, Saarma M. CDNF Protein Therapy in Parkinson's Disease. Cell Transplant 2019; 28(4): 349-66. [CrossRef ]
  • 115. Numao A, Suzuki K, Miyamoto M, Miyamoto T, Hirata K. Clinical correlates of serum insulin-like growth factor-1 in patients with Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 2014; 20(2): 212-6. [CrossRef ]
  • 116. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington's disease. Prog Neurobiol 2007; 81(5-6): 294-330. [CrossRef ]
  • 117. Martínez-Serrano A, Björklund A. Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. J Neurosci 1996; 16(15): 4604-16. [CrossRef ]
  • 118. Zimmermann T, Remmers F, Lutz B, Leschik J. ESC-Derived BDNF- Overexpressing Neural Progenitors Differentially Promote Recovery in Huntington's Disease Models by Enhanced Striatal Differentiation. Stem Cell Reports 2016; 7(4): 693-706. [CrossRef ]
  • 119. Yusuf IO, Cheng PH, Chen HM, Chang YF, Chang CY, Yang HI, et al. Fibroblast Growth Factor 9 Suppresses Striatal Cell Death Dominantly Through ERK Signaling in Huntington's Disease. Cell Physiol Biochem 2018; 48(2): 605-17. [CrossRef ]
  • 120. Gören JL. Brain-derived neurotrophic factor and schizophrenia. Ment Health Clin 2016; 6(6): 285-8. [CrossRef ]
  • 121. Neugebauer K, Hammans C, Wensing T, Kumar V, Grodd W, Mevissen L, et al. Nerve Growth Factor Serum Levels Are Associated With Regional Gray Matter Volume Differences in Schizophrenia Patients. Front Psychiatry 2019; 10: 275. [CrossRef ]
  • 122. Peng S, Li W, Lv L, Zhang Z, Zhan X. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discov Med 2018; 26(143): 127-36.
  • 123. Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 2010; 7(4): 231-5. [CrossRef ]
  • 124. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [CrossRef ]
  • 125. Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003; 3(2): 90-105, 51. [CrossRef ]
  • 126. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain- derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 1998; 37(12): 1553-61. [CrossRef ]
  • 127. Poduslo JF, Curran GL. Permeability at the blood-brain and blood- nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 1996; 36(2): 280-6. [CrossRef ]
  • 128. Fu H, McCarty DM. Crossing the blood-brain-barrier with viral vectors. Curr Opin Virol 2016; 21: 87-92. [CrossRef ]
  • 129. Sivandzade F, Cucullo L. In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies. J Cereb Blood Flow Metab 2018; 38(10): 1667-81. [CrossRef ]
  • 130. Jaeger CB, Winn SR, Tresco PA, Aebischer P. Repair of the blood- brain barrier following implantation of polymer capsules. Brain Res 1991; 551(1-2): 163-70. [CrossRef ]
  • 131. Ghosh D, Peng X, Leal J, Mohanty R. Peptides as drug delivery vehicles across biological barriers. J Pharm Investig 2018; 48(1): 89- 111. [CrossRef ]
  • 132. Wang Y, Gallagher E, Jorgensen C, Troendle EP, Hu D, Searson PC, et al. An experimentally validated approach to calculate the blood- brain barrier permeability of small molecules. Sci Rep 2019; 9(1): 6117. [CrossRef ]
  • 133. Xing H, Hwang K, Lu Y. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics 2016; 6(9): 1336-52. [CrossRef ]
  • 134. Chen C, Duan Z, Yuan Y, Li R, Pang L, Liang J, et al. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. ACS Appl Mater Interfaces. 2017; 9(7): 5864-73. [CrossRef ]
  • 135. Pardridge WM. Neurotrophins, neuroprotection and the blood- brain barrier. Curr Opin Investig Drugs 2002; 3(12): 1753-7.
  • 136. Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 2017; 11: 325-35. [CrossRef ]
APA Toprak F, TOPRAK S, Sozer Tokdemir S (2021). Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. , 57 - 66. 10.26650/experimed.2021.831169
Chicago Toprak Fatih,TOPRAK SELIN FULYA,Sozer Tokdemir Selcuk Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. (2021): 57 - 66. 10.26650/experimed.2021.831169
MLA Toprak Fatih,TOPRAK SELIN FULYA,Sozer Tokdemir Selcuk Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. , 2021, ss.57 - 66. 10.26650/experimed.2021.831169
AMA Toprak F,TOPRAK S,Sozer Tokdemir S Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. . 2021; 57 - 66. 10.26650/experimed.2021.831169
Vancouver Toprak F,TOPRAK S,Sozer Tokdemir S Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. . 2021; 57 - 66. 10.26650/experimed.2021.831169
IEEE Toprak F,TOPRAK S,Sozer Tokdemir S "Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü." , ss.57 - 66, 2021. 10.26650/experimed.2021.831169
ISNAD Toprak, Fatih vd. "Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü". (2021), 57-66. https://doi.org/10.26650/experimed.2021.831169
APA Toprak F, TOPRAK S, Sozer Tokdemir S (2021). Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. EXPERIMED, 11(1), 57 - 66. 10.26650/experimed.2021.831169
Chicago Toprak Fatih,TOPRAK SELIN FULYA,Sozer Tokdemir Selcuk Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. EXPERIMED 11, no.1 (2021): 57 - 66. 10.26650/experimed.2021.831169
MLA Toprak Fatih,TOPRAK SELIN FULYA,Sozer Tokdemir Selcuk Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. EXPERIMED, vol.11, no.1, 2021, ss.57 - 66. 10.26650/experimed.2021.831169
AMA Toprak F,TOPRAK S,Sozer Tokdemir S Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. EXPERIMED. 2021; 11(1): 57 - 66. 10.26650/experimed.2021.831169
Vancouver Toprak F,TOPRAK S,Sozer Tokdemir S Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü. EXPERIMED. 2021; 11(1): 57 - 66. 10.26650/experimed.2021.831169
IEEE Toprak F,TOPRAK S,Sozer Tokdemir S "Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü." EXPERIMED, 11, ss.57 - 66, 2021. 10.26650/experimed.2021.831169
ISNAD Toprak, Fatih vd. "Yetişkin Nörogenez ve Nörodejeneratif Hastalıklarda Büyüme Faktörlerinin Rolü". EXPERIMED 11/1 (2021), 57-66. https://doi.org/10.26650/experimed.2021.831169