Yıl: 2022 Cilt: 8 Sayı: 1 Sayfa Aralığı: 82 - 90 Metin Dili: Türkçe DOI: 10.53394/akd.1037771 İndeks Tarihi: 29-07-2022

Moleküler Kimerizm Metotları: Geçmiş ve Günümüz

Öz:
Kimerizm analizi, hematolojide allojenik hematopoetik kök hücre transplantasyonu (AHKHT) sonrası hastadaki donör hücre miktarının tespiti için kullanılan bir tanı yöntemidir. Transplantasyon sonrası yapılan kimerizm analizi, donör hücre engraftmanı ve hastalığın relapsı açısından oldukça önemli bilgiler vermektedir. Kimerizm analizi, çeşitli belirteçler ve teknikler kullanılarak yapılmaktadır. Son zamanlarda kantitatif-gerçek zamanlı polimeraz zincir reaksiyonu (qRT-PCR), dijital droplet-PCR (dd-PCR) ve yeni nesil dizileme (NGS) gibi yeni kimerizm yöntemleri kullanılmaktadır. Bu derlemede multipleks kısa ardışık tekrarlı dizi tabanlı PCR (STR-PCR) yöntemi ile yeni moleküler qRT-PCR, dd-PCR ve NGS yöntemlerinin avantajlı ve dezavantajlı yönleri karşılaştırılıp tartışılmıştır.
Anahtar Kelime: dd-PCR qRT-PCR Kimerizm analizi NGS STR-PCR

Molecular Chimerism Methods: Past and Present

Öz:
Chimerism analysis is a diagnostic method used to determine the amount of donor cells in the patient for hematologic cases after allogeneic hematoietic stem cell transplantation (AHSCT). Post-transplant chimerism analysis provides very important information in terms of donor cell engraftment and relapse. Chimerism analysis is performed using various markers and techniques. Recently, new chimerism methods have been used such as quantitative-real time polymerase chain reaction (qRT-PCR), digital droplet-PCR (dd-PCR) and next generation sequencing (NGS). In this review, multiplex short tandem repeat based-PCR (STR-PCR) and new molecular methods qRT-PCR, dd-PCR and NGS were compared and discussed in the terms of advantageous and disadvantageous aspects.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Schmitt M. Bellerophon and the Chimaera in Archaic Greek Art. American Journal of Archaeology 1966; 70(4):341-347.
  • 2. Anderson D, Billingham RE, Lampkin GH, Medawar PB. The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity 1951; 5:379-397.
  • 3. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996; 93(2):705-708.
  • 4. Boklage CE. Embryogenesis of chimeras, twins and anterior midline asymmetries. Hum Reprod 2006; 21(3):579-91.
  • 5. Koopmans M, Kremer Hovinga IC, Baelde HJ, Fernandes RJ, de Heer E, Bruijn JA, Bajema IM. Chimerism in kidneys, livers and hearts of normal women: implications for transplantation studies. Am J Transplant 2005; 5(6):1495-502.
  • 6. Yu N, Kruskall MS, Yunis JJ, Knoll JH, Uhl L, Alosco S, Ohashi M, Clavijo O, Husain Z, Yunis EJ, Yunis JJ, Yunis EJ. Disputed maternity leading to identification of tetragametic chimerism. N Engl J Med 2002; 346(20):1545-52.
  • 7. Novotný J, Lotz P, Müller S, Steinlein O. Identification of tetragametic human chimerism by routine DNA profiling. Int J Legal Med 2019; 133(4):989-992.
  • 8. Verdiani S, Bonsignore A, Casarino L, Ferrari GM, Zia SC, De Stefano F. An unusual observation of tetragametic chimerism: forensic aspects. Int J Legal Med 2009; 123(5):431-5.
  • 9. Crouse CA, Schumm J. Investigation of species specificity using nine PCR-based human STR systems. J Forensic Sci 1995; 40(6):952-6. 10. Manasatienkij C, Ra-ngabpai C. Clinical application of forensic DNA analysis: a literature review. J Med Assoc Thai 2012; 95(10):1357-63.
  • 11. Walseng E, Köksal H, Sektioglu IM, Fane A, Skorstad G, Kvalheim G, Gaudernack G, Inderberg EM, Walchli S. TCR-based chimeric antigen receptor. Sci Rep 2017; 7:10713.
  • 12. Rautenberg C, Germing U, Haas R, Kobbe G, Schroeder T. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: Prevention, detection, and treatment. Int J Mol Sci 2019; 20(1):228.
  • 13. Quader M, Toldo S, Chen Q, Hundley G, Kasirajan V. Heart transplantation from donation after circulatory death donors: Present and future. J Card Surg 2020; 35(4):875-885.
  • 14. Augustine J. Kidney transplant: New opportunities and challenges. Cleve Clin J Med 2018; 85(2):138-144.
  • 15. Bloch EM, Jackman RP, Lee TH, Busch MP. Transfusion-associated microchimerism: the hybrid within. Transfus Med Rev 2013; 27(1):10-20.
  • 16. Ma KK, Petroff MG, Coscia LA, Armenti VT, Adams Waldorf KM. Complex chimerism: pregnancy after solid organ transplantation. Chimerism 2013; 4(3):71-77.
  • 17. Trivedi HL, Vanikar AV, Modi PR, Shah VR, Vakil JM, Trivedi VB, Khemchandani SI. Allogeneic hematopoietic stem-cell transplantation, mixed chimerism, and tolerance in living related donor renal allograft recipients. Transplant Proc 2005; 37(2):737-742.
  • 18. Bader P, Kreyenberg H, Hoelle W, et al. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J Clin Oncol 2004; 22(9):1696-1705.
  • 19. Rettinger E, Willasch AM, Kreyenberg H, et al. Preemptive immunotherapy in childhood acute myeloid leukemia for patients showing evidence of mixed chimerism after allogeneic stem cell transplantation. Blood 2011; 118(20):5681-5688.
  • 20. Guz K, Nasilowska B, Tomaszewska A, Orzinska A, Smolarczyk-Wodzynska J, Krzemienowska M, Halaburda K, Przybylski M, Jedrzejczak WW, Marianska B, Brojer E. Real-time PCR analysis of chimerism in T cell subsets as an early predictor of Graft-versus-host-disease following allogeneic stem cell transplantation. Ann Transplant 2015; 20:720-728.
  • 21. Stumph J, Vnencak-Jones C, Koyama T, Frangoul H. Comparison of peripheral blood and bone marrow samples for detection of post transplant mixed chimerism. Bone Marrow Transplant 2008; 41:589–590.
  • 22. Bach C, Steffen M, Roesler W, Winkler J, Mackensen A, Stachel KD, Metzler M, Spriewald BM. Systematic comparison of donor chimerism in peripheral blood and bone marrow after hematopoietic stem cell transplantation. Blood Cancer J 2017; 7(6):e566.
  • 23. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J of Hum Genet 1980; 32(3):314-331.
  • 24. Dumbovic G, Forcales SV, Perucho M. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics 2017; 12(7):515-526.
  • 25. Trent RJ. Genes to personalized medicine. In: Trent RJ. Molecular Medicine: genomics to personalized healthcare. 4th Ed. San Diego, CA, USA, Academic Press 2012: 1-37.
  • 26. Dumache R, Enache A, Barbarii L, Costantinescu C, Pascalau A, Jinca C, Arghirescu S. Chimerism monitoring by short tandem repeat (STR) markers in allogeneic stem cell transplantation. Clin Lab 2018; 64:1535-1543.
  • 27. Lawler M, McCann SR, Conneally E, Humphries P. Chimerism following allogeneic bone marrow transplantation: Detection of residual host cells using the polymerase chain reaction. Br J Haematol 1989; 73(2):205-210.
  • 28. Thiede C, Florek M, Bornhäuser M, Ritter M, Mohr B, Brendel C, Ehninger G, Neubauer A. Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 1999; 23(10):1055-1060.
  • 29. Siddiqui Z, Maldonado J, Grojean J, Ye F, Zhang D, Longtine J, Ahn TH, Guo H. Rchimerism: An R package for automated chimerism data analysis. J Mol Diagn 2020; 22(1):21-29.
  • 30. Hagen-Mann K, Mann W. RT-PCR and alternative methods to PCR for in vitro amplification of nucleic acids. Exp Clin Endocrinol Diabetes 1995; 103(3):150-155.
  • 31. Butler JM. DNA Quantitation. In: John M. Butler. Advanced Topics in Forensic DNA Typing: Methodology. 1st Ed. Maryland, USA: Academic Press 2012: 49-67.
  • 32. Cheranev VV, Loginova MA, Kutyavina SS, Smirnova DN, Zorina NA, Minaeva NV, Paramonov IV. [Expirience introduction of quantitative analysis of chimerism after allogenic stem cell transplantation by real-time PCR with InDel polymorphism.]. Klin Lab Diagn 2019; 64(12):762-768.
  • 33. Jacque N, Nguyen S, Golmard JL, Uzunov M, Garnier A, Leblond V, Vernant JP, Bories D, Dhédin N. Chimerism analysis in peripheral blood using indel quantitative real-time PCR is a useful tool to predict post-transplant relapse in acute leukemia. Bone Marrow Transplant 2015; 50(2):259-265.
  • 34. Almeida CA, Dreyfuss JL, Azevedo-Shimmoto MM, Figueiredo MS, de Oliveira JS. Evaluation of 16 SNPs allele-specific to quantify post hSCT chimerism by SYBR green-based qRT-PCR. J Clin Pathol 2013; 66(3):238-242.
  • 35. Elmaagacli AH. Real-time PCR for monitoring minimal residual disease and chimerism in patients after allogeneic transplantation. Int J Hematol 2002; 76 Suppl 2:204-205.
  • 36. Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, Lamy T, Le Prise PY, Beauplet A, Bories D, Semena G, Quelvennec E. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 2002; 99:4618–4625.
  • 37. Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem 2015; 61(1):79-88.
  • 38. Valero-Garcia J, Gonzalez-Espinosa MdC, Barrios M, Carmona-Antonanzas G, et al. Earlier relapse detection after allogeneic haematopoietic stem cell transplantation by chimerism assays: Digital PCR versus quantitative real-time PCR of insertion/deletion polymorphisms. PLoS One 2019; 14(2): e0212708.
  • 39. Mika T, Baraniskin A, Ladigan S, Wulf G, Dierks S, Haase D, Schork K, Turewicz M, Eisenacher M, Schmiegel W, Schroers R, Klein-Scory S. Digital droplet PCR-based chimerism analysis for monitoring of hematopoietic engraftment after allogeneic stem cell transplantation. Int J Lab Hematol 2019; 41(5):615-621.
  • 40. Pettersson L, Vezzi F, Vonlanthen S, Alwegren K, Hedrum A, Hauzenberger D. Development and performance of a next generation sequencing (NGS) assay for monitoring of mixed chimerism. Clin Chim Acta 2021; 512:40-48.
  • 41. Sunami K, Ichikawa H, Kubo T, et al. Feasibility and utility of a panel testing for 114 cancer-associated genes in a clinical setting: A hospital-based study. Cancer Sci 2019; 110(4):1480-1490.
  • 42. Chen M, Zhao H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 2019; 13(1):34.
  • 43. Pettersson L, Vezzi F, Vonlanthen S, Alwegren K, Hedrum A, Hauzenberger D. Development and performance of a next generation sequencing (NGS) assay for monitoring of mixed chimerism. Clin Chim Acta 2020; 512:40-48.
  • 44. Lee JM, Kim YJ, Park SS, Han E, Kim M, Kim Y. Simultaneous monitoring of mutation and chimerism using Next-Generation Sequencing in Myelodysplastic Syndrome. J Clin Med 2019; 8(12):2077.
  • 45. Clark JR, Scott SD, Jack AL, et al. United Kingdom National External Quality Assessment Service for Leucocyte Immunophenotyping Chimerism Working Group. Monitoring of chimerism following allogeneic haematopoietic stem cell transplantation (HSCT): technical recommendations for the use of short tandem repeat (STR) based techniques, on behalf of the United Kingdom National External Quality Assessment Service for Leucocyte Immunophenotyping Chimerism Working Group. Br J Haematol 2015; 168(1):26-37.
  • 46. Lion T, Watzinger F, Preuner S, et al. The EuroChimerism concept for a standardized approach to chimerism analysis after allogeneic stem cell transplantation. Leukemia 2012; 26:1821–1828.
  • 47. Schraml E, Daxberger H, Watzinger F, Lion T. Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Vienna experience. Leukemia 2003; 17:224–227.
  • 48. Kreyenberg H, HölleW, Möhrle S, Niethammer D, Bader P.Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Tuebingen experience. Leukemia 2003; 17:237–240.
  • 49. Abatay-Sel F, Savran-Oguz F, Kalayoglu-Besisik S, Mastanzade M, Duvarci-Ogret Y, Yonal-Hindilerden I, Aydin F. Short tandem repeat-polymerase chain reaction (STR-PCR) with quantitative real time-polymerase chain reaction (qRT-PCR) method using for chimerism analysis. Clin Lab 2019; 65(9):1697-1703.
  • 50. Tyler J, Kumer L, Fisher C, Casey H, Shike H. Personalized chimerism test that uses selection of short tandem repeat or quantitative PCR depending on patient’s chimerism status. J Mol Diagn 2019; 21: 483-490.
  • 51. Kliman D, Nivison-Smith I, Gottlieb D, Hamad N, Kerridge I, Purtill D, Szer J, Ma D. Hematopoietic stem cell transplant recipients surviving at least 2 years from transplant have survival rates approaching population levels in the modern era of transplantation. Biol Blood Marrow Transplant 2020; 26(9):1711-1718.
  • 52. Navarro-Bailon A, Carbonell D, Escudero A, et al. Short tandem repeats (STRs) as biomarkers fort he quantitative follow-up of chimerism after stem cell transplantation: Methodological consideritions and clinical application. Genes 2020; 11(9):993.
  • 53. Thiede C, Bornhauser M, Ehninger G. Strategies and clinical implications of chimerism diagnostics after allogeneic hematopoietic stem cell transplantation. Acta Haematol 2004; 112:16–23.
  • 54. Aloisio M, Licastro D, Caenazzo L, Torboli V, D’Eustacchio A, Severini GM, Athanasakis E. A technical application of quantitative next generation sequencing for chimerism evaluation. Mol Med Rep 2016; 14:2967–2974.
APA Abatay Sel F, SAVRAN OGUZ F (2022). Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. , 82 - 90. 10.53394/akd.1037771
Chicago Abatay Sel Figen,SAVRAN OGUZ FATMA Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. (2022): 82 - 90. 10.53394/akd.1037771
MLA Abatay Sel Figen,SAVRAN OGUZ FATMA Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. , 2022, ss.82 - 90. 10.53394/akd.1037771
AMA Abatay Sel F,SAVRAN OGUZ F Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. . 2022; 82 - 90. 10.53394/akd.1037771
Vancouver Abatay Sel F,SAVRAN OGUZ F Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. . 2022; 82 - 90. 10.53394/akd.1037771
IEEE Abatay Sel F,SAVRAN OGUZ F "Moleküler Kimerizm Metotları: Geçmiş ve Günümüz." , ss.82 - 90, 2022. 10.53394/akd.1037771
ISNAD Abatay Sel, Figen - SAVRAN OGUZ, FATMA. "Moleküler Kimerizm Metotları: Geçmiş ve Günümüz". (2022), 82-90. https://doi.org/10.53394/akd.1037771
APA Abatay Sel F, SAVRAN OGUZ F (2022). Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. Akdeniz Tıp Dergisi, 8(1), 82 - 90. 10.53394/akd.1037771
Chicago Abatay Sel Figen,SAVRAN OGUZ FATMA Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. Akdeniz Tıp Dergisi 8, no.1 (2022): 82 - 90. 10.53394/akd.1037771
MLA Abatay Sel Figen,SAVRAN OGUZ FATMA Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. Akdeniz Tıp Dergisi, vol.8, no.1, 2022, ss.82 - 90. 10.53394/akd.1037771
AMA Abatay Sel F,SAVRAN OGUZ F Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. Akdeniz Tıp Dergisi. 2022; 8(1): 82 - 90. 10.53394/akd.1037771
Vancouver Abatay Sel F,SAVRAN OGUZ F Moleküler Kimerizm Metotları: Geçmiş ve Günümüz. Akdeniz Tıp Dergisi. 2022; 8(1): 82 - 90. 10.53394/akd.1037771
IEEE Abatay Sel F,SAVRAN OGUZ F "Moleküler Kimerizm Metotları: Geçmiş ve Günümüz." Akdeniz Tıp Dergisi, 8, ss.82 - 90, 2022. 10.53394/akd.1037771
ISNAD Abatay Sel, Figen - SAVRAN OGUZ, FATMA. "Moleküler Kimerizm Metotları: Geçmiş ve Günümüz". Akdeniz Tıp Dergisi 8/1 (2022), 82-90. https://doi.org/10.53394/akd.1037771