Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi

Yıl: 2022 Cilt: 37 Sayı: 3 Sayfa Aralığı: 1453 - 1468 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.953925 İndeks Tarihi: 29-07-2022

Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi

Öz:
Bu çalışmada, Tekirdağ iline içme suyu sağlayan bazı baraj gölü/göletlerin yüzey sedimanlarında bazı organik kirleticilerinin (PAH, PCB ve OCP) seviyesini ortaya koymak, olası PAH kaynaklarını belirlemek ve sediman kalitesinin ekolojik risk değerlendirmesi ile amaçlanmıştır. Yüzey sediman örnekleri Ekim 2020’ de Naipköy barajı, Türkmenli Göleti, Yazır Göleti ve Şarköy Göletinden alınmıştır. Örneklerin PAH, PCB ve OCP konsantrasyonları GC-MS/MS kullanılarak ölçülmüştür. Örneklerdeki toplam PAH konsantrasyonları 20,56 ng/g (T5) ile 124,4 ng/g (T4) arasında değişmektedir. Örnekler bireysel PAH bileşikleri bakımından incelendiğinde, sırasıyla Naftalen, Fenantren, Floranten, Piren, Benzo(b)floranten, Krizen ve Floren baskın PAH bileşikleridir. T2 sediman örneği hariç, diğer tüm sediman örneklerinde Naftalen baskın durumdadır ve konsantrasyonu 6,929 ng/g (T2) ile 72,67 ng/g (T4) aralığından tespit edilmiştir. Toplam OCP konsantrasyonu 0,710 ng/g (T5) -7,918 ng/g (T8) aralığında değişirken, toplam PCB konsantrasyonu 0,120 ng/g (T5) -0,383 (T8) ng/g aralığında bulunmuştur. Örneklerde en baskın OCP bileşikleri sırasıyla DDT p,p, DDE p,p ve HCH alfa olurken, aynı örneklerde PCB 153, 138 ve 180 en yüksek tespit edilen PCB konjeneleridirler. PAH'ların kaynak tanımlaması PAH bileşiklerinin moleküler oranları kullanılarak yapılmıştır. Hesaplanan tüm moleküler oranlar bir arada düşündüğünde, sediman örneklerindeki PAH bileşiklerinin kaynağının daha çok petrojenik kaynaklı olduğu bulunmuştur. Örneklerdeki PAH, PCB ve OCP'lerin seviyelerinin hiçbiri, su organizmalarında toksik etkilerin sıklıkla meydana geldiği kirletici seviyesi olan ERM değerlerini geçmemiştir.
Anahtar Kelime: PAH PCB yüzey sediman OCP risk değerlendirmesi

Determination of PAH, PCB and OCP levels and risk assessment in some dam lake/pond surface sediments supplying drinking water to Tekirdağ province

Öz:
The purpose of this study was to determine the level of some organic pollutants in the surface sediments of some dam lakes/ponds supplying drinking water to Tekirdağ, to specifiy possible PAH sources and to perform the ecological risk assessment of sediment quality. Sediment samples were taken from Naipköy Dam, Türkmenli Pond, Yazır Pond and Şarköy Pond in October, 2020. The concentrations of PAHs, PCBs and OCPs in the samples were measured using GC-MS/MS. Total PAH concentrations in the samples ranged from 20.56 ng/g (T5) to 124.4 ng/g (T4). When the samples are examined for individual PAH compounds, Naphthalene, Phenanthrene, Fluoranthene, Pyrene, Benzo(b)fluorantene, Chrysene and Fluorene are the predominant PAH compounds, respectively. Naphthalene is dominant in all other sediment samples, except for the T2 sediment sample, and its concentration has been detected in the range of 6.929 ng/g (T2) to 72.67 ng/g (T4). The total OCP concentrations ranged from 0.710 ng/g (T5) to 7.918 ng/g (T8), while the total PCB concentrations ranged from 0.120 ng/g (T5) to 0.383 (T8) ng/g. In the samples, the most dominant OCP compounds were DDT p, p, DDE p, p and HCH alpha, respectively, while PCB 153, 138 and 180 were the highest detected PCB congeners. Source identification of PAHs was made using the molecular ratios of PAH compounds. Considering all the calculated molecular ratios together, it has been found that the source of PAH compounds in sediment samples is mostly petrogenic. None of the levels of PAHs, PCBs and OCPs in the samples exceeded the ERM values, which is the contaminant level at which toxic effects often occur in aquatic organisms.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Botwe B.O., Kelderman P., Nyarko E., Lens P.N.L., Assessment of DDT, HCH and PAH Contamination and Associated Ecotoxicological Risks in Surface Sediments of Coastal Tema Harbour (Ghana), Mar. Pollut. Bull. 115, 480-488, 2017.
  • 2. Kanzari F., Syakti A.G., Asia L., Malleret L., Mille G., Jamoussi B., Abderrabba M., Doumenq P., Aliphatic Hydrocarbons, Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls, Organochlorine, and Organophosphorous Pesticides in Surface Sediments from The Arc River and The Berre Lagoon, France, Environ. Sci. Pollut. Res., 19, 559-576, 2012.
  • 3. Başar H., Güzel B., Özer Erdoğan P., Tolun L., Determination of The Environmental Effects of Turkey's Marine Dredged Materials Prior To Beneficial Use: Commercial Ports & Fishery Harbours, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4), 1063-1076, 2017.
  • 4. Bersuder P., Smith A.J., Hynes C., Warford L., Barber J.L., Losada S., Limpenny C., Khamis A.S., Abdulla K.H., Le Quesne W.J.F., Lyons B.P., Baseline Survey of Marine Sediments Collected from The Kingdom of Bahrain: PAHs, PCBs, Organochlorine Pesticides, Perfluoroalkyl Substances, Dioxins, Brominated Flame Retardants and Metal Contamination, Mar. Pollut. Bull., 161, 111734, 2020.
  • 5. Guzel B., Basar H.M., Gunes K., Yenisoy-Karakas S. Tolun L., Investigation of Topsoil Production from Marine Dredged Materials (DMs) In Turkey for Urban Landscaping Works, Heliyon, 5 (7), e0213, 2019.
  • 6. Yılmaz A., Tolun L., Okay O.S., Pollution and Toxicity of Sediment in Potential Dredging Sites of the Marmara Sea, Turkey, J. Environ. Sci. and Health, Part A, 54 (12), 1206-1218, 2019.
  • 7. Akdemir T., Dalgic G., The impact of the Marine Sewage Outfalls On the Sediment Quality: The Black Sea and The Marmara Case, Saudi J. Biol. Sci., 28 (1), 238-246, 2021.
  • 8. Başar H., Güzel B., Özer-erdoğan P., Murat-Hocaoğlu S., Özel D., Ergenekon Ş., Tolun G., Deniz Dibi Tarama Malzemesinin Faydalı Kullanımı için Yıkama-Eleme Tesisi Tasarımı ve Yıkama-Eleme Prosesi Atıksuyunun Yönetimi, Sakarya Uni. J. Sci., 22 (2), 735-747, 2018.
  • 9. Eljarrata E., De La Cala A., Larrazabal D., Fabrellas B., Fernandez-Alba A.R., Borrull F., Marce R.M., Barcelo D., Occurrence of Polybrominated Diphenylethers, Polychlorinated Dibenzo-P-Dioxins, Dibenzofurans and Biphenyls in Coastal Sediments from Spain. Environ. Pollut., 136, 493-501, 2005.
  • 10. SC-POPs, Stockholm Convention on Persistent Organic Pollutants, http://chm. pops.int/ TheConvention /Overview/ TextoftheConvention/ tabid/ 2232/ Default.aspx. Yayın tarihi 2009, Erişim tarihi Ekim 01, 2021.
  • 11. Tandoğan B., Eker Şanlı G., Removal PCBs in soil using of H2O2 during UVA applications, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 779-792, 2021.
  • 12. Mitra S., Corsolini S., Pozo K., Audy O., Sarkar S.K., Biswas J.K., Characterization, Source Identification and Risk Associated with Polyaromatic and Chlorinated Organic Contaminants (PAHs, PCBs, PCBzs and OCPs) in The Surface Sediments of Hooghly Estuary, India, Chemosphere, 221, 154-165, 2019.
  • 13. Erkul Ş., Eker Şanlı G., Determination of Polychlorinated Biphenyl (PCB) Concentrations of Olive Groves in Spring Season, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 1003-1014, 2020.
  • 14. Wang X., Chen L., Wang X., Lei B., Sun Y., Zhou J., Wu M., Occurrence, Sources and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Urban (Pudong) and Suburban Soils from Shanghai in China, Chemosphere 119, 1224-1232, 2015.
  • 15. Eker G. Spatial Variations of Polycyclic Aromatic Hydrocarbons (PAHs) Concentrations in Olive Grove Area Soils in Bursa, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 607-616, 2017.
  • 16. Zhao Z., Jiang Y., Li Q., Cai Y., Hongbin Y., Zhang L., Zhang J., Spatial Correlation Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) and Organochlorine Pesticides (OCPs) in Sediments Between Taihu Lake and Its Tributary Rivers, Ecotoxicol. Environ. Saf., 142, 117-128, 2017.
  • 17. Rabodonirina S., Net S., Ouddane B., Merhaby D., Dumoulin D., Popescu T., Ravelonandro P., Distribution of Persistent Organic Pollutants (PAHs, MePAHs, PCBs) in Dissolved, Particulate and Sedimentary Phases in Freshwater Systems, Environ. Pollut., 206, 38–48, 2015.
  • 18. Kueh C.S.W., Lam J.Y.C., Monitoring of Toxic Substances in The Hong Kong Marine Environment, Mar. Pollut. Bull., 57, 744–757, 2008.
  • 19. Choi H.G., Moon H.B., Choi M., Yu J. Monitoring of Organic Contaminants in Sediments from The Korean Coast: Spatial Distribution and Temporal Trends (2001– 2007), Mar. Pollut. Bull., 62, 1352–1361, 2011.
  • 20. Aslı N.G., Modeling of Sediment Transport Processes in Alara, Turkey, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 545-553, 2016.
  • 21. T.C. Tekirdağ Valiliği Çevre Ve Şehircilik İl Müdürlüğü, Tekirdağ İli 2017 Yılı Çevre Durum Raporu ÇED ve Çevre İzinleri Şube Müdürlüğü, Çevre Yönetimi ve Çevre Denetimi Şube Müdürlüğü, 2-3, 2018.
  • 22. Tekirdağ Su ve Kanalizasyon İdaresi Genel Müdürlüğü (TESKİ), 2014 Faaliyet Raporu, ÇED ve Çevre İzinleri Şube Müdürlüğü, Çevre Yönetimi ve Çevre Denetimi Şube Müdürlüğü, 2015.
  • 23. Ferreira J.A., Ferreira J.M.S., Talamini V., Facco J.F., Rizzetti T.M., Prestes O.D., Adaime M.B., Zanella R., Bottoli C.B.G., Determination of Pesticides in Coconut (Cocos Nucifera Linn.) Water and Pulp Using Modified QuEChERS and LC-MS/MS, Food Chem., 213, 616-24, 2016.
  • 24. Shrivastava A., Gupta V.B., Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods, Chron. Young Sci., 2, 21-25, 2011.
  • 25. Güzel B., Canlı O. Method Validation and Measurement Uncertainty of Possible Thirty Volatile Organic Compounds (VOCs) Presented in the Polyethylene Present in Bottled Drinking Waters Sold in Turkey, J. Anal. Sci. & Tech., 11 (44), 1-17, 2020.
  • 26. Güzel B., Canlı O., Öktem Olgun E, Gas Chromatography Method Validation Study for Sensitive and Accurate Determination of Volatile Aromatic Hydrocarbons (VAHs) in Water, Cumhuriyet Sci. J., 39 (4), 970-982, 2018.
  • 27. Güzel B., Canlı O., Applicability of Purge and Trap Gas Chromatography-Mass Spectrometry Method for Sensitive Analytical Detection of Naphthalene and Its Derivatives in Waters, J. Mass Spectrom., 55, e4672, 2020.
  • 28. Bemanikharanagh A., Bakhtiari A.R., Mohammadi J., Taghizadeh-Mehrjardi R., Characterization and Ecological Risk of Polycyclic Aromatic Hydrocarbons (PAHs) and n-alkanes in Sediments of Shadegan International Wetland, the Persian Gulf, Mar. Pollut. Bull., 124, 155-170, 2017.
  • 29. EPA, Polycyclic Aromatic Hydrocarbons (PAHs) - EPA Fact Sheet, Washington, DC: National Center for Environmental Assessment, Office of Research and Development, 2008.
  • 30. Benson N.U., Essien J.P., Asuquo F.E., Eritobor A.L., Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons in Surface Microlayer and Subsurface Seawater of Lagos Lagoon, Nigeria, Environ. Monit. Assess., 186, 5519-5529, 2014.
  • 31. Ezemonye L.I.N., Polychlorinated Biphenyls (PCBs) Levels and Distribution in Ethiope and Benin Rivers of the Niger Delta, Nigeria: Surface Water and Sediments, Inter. J. Environ. Stud., 62, 491-504, 2005.
  • 32. WHO, Polychlorinated Biphenyls and Terphenyls (Second Edition), Environmental Health Criteria 140. IPCS International Programme on Chemical Safety, World Health Organization, GENEVA, 683, 1993.
  • 33. Covaci A., Gheorghe A., Hulea O., Schepens P., Levels and Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Sediments and Biota From the Danube Delta, Romania, Environ. Pollut., 140, 136-149, 2006.
  • 34. Samara F., Tsai C.W., Aga D.S., Determination of Potential Sources of PCBs and PBDEs in Sediments of the Niagara River, Environ. Pollut., 139, 489-497, 2006.
  • 35. Vane C.H., Harrison I., Kim A.W., Assessment of Polyaromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) in Surface Sediments of the Inner Clyde Estuary, UK, Mar. Pollut. Bull., 54, 1287-1306, 2007.
  • 36. Souza M.R.R., Santos E., Suzarte J.S., Carmo L.O., Frena M., Damasceno F.C., Alexandre M.R., Concentration, Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in Poxim River Sediments, Brazil, Mar. Pollut. Bull., 127, 478– 483, 2018.
  • 37. Benson N.U., Fred-Ahmadu O.H., Ekett S.I., Basil M.O., Adebowale A.D., Adewale A.G., Ayejuyo O.O., Occurrence, Depth Distribution and Risk Assessment of PAHs and PCBs in Sediment Cores of Lagos Lagoon, Nigeria, Reg. Stud. Mar. Sci., 37, 101335, 2020.
  • 38. Ramzi A., Habeeb K., Gireeshkumar T.R., Balachandran K.K., Jacob C., Chandramohanakumar N., Dynamics of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments of Cochin Estuary, India, Mar. Pollut. Bull., 114 (2), 1081–1087, 2017.
  • 39. Doong R., Lin Y., Characterization and Distribution of Polycyclic Aromatic Hydrocarbon Contamination in Surface Sediment and Water from Gao-Ping River, Traiwan, Water Res., 38, 1733-1744, 2004.
  • 40. Zakaria M.P., Takada H., Tsutsumi S., Ohno K., Yamada J., Kouno E., Kumata H., Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Rivers and Estuaries in Malaysia: A Widespread Input of Petrogenic PAHs, Environ. Sci. Technol., 36, 1907- 1918, 2002.
  • 41. Maskaoui K., Zhou J.L., Hong H.S., Zhang Z.L., Contamination by Polycyclic Aromatic Hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China, Environ. Pollut.,118, 109-122, 2002.
  • 42. He X., Pang Y., Song X., Chen B., Feng Z., Ma Y., Distribution, Sources and Ecological Risk Assessment of PAHs in Surface Sediments from Guan River Estuary, China, Mar. Pollut. Bull., 80, 52-58, 2014.
  • 43. Kuzukıran Ö., Filazi A., Arslan P., Yurdakök Dikmen B., Yazgan Tavşanoğlu Ü.N., Determination of Persistent Organic Pollutants in Water and Sediment Samples from Kızılırmak River, Kocatepe Vet. J., 12 (4), 430-436, 2019.
  • 44. Pazı I., Gönül L.T., Küçüksezgin F., Pesticide and PCB Residues in Biotic and Abiotic Environment in Lake Bafa, Ege J. Fish. Aqua. Sci., 30 (4), 175-182, 2013.
  • 45. Manoli E., Kouras A., Samara C., Profile Analysis of Ambient and Source Emitted Particle-Bound Polycyclic Aromatic Hydrocarbons from Three Sites in Northern Greece, Chemosphere, 56 (9), 867-878, 2004.
  • 46. Dudhagara D.R., Rajpara R.K., Bhatt J.K., Gosai H.B., Sachaniya B.K., Dave B.P., Distribution, Sources and Ecological Risk Assessment of PAHs in Historically Contaminated Surface Sediments at Bhavnagar Coast, Gujarat, India, Environ. Pollut., 213, 338-346, 2016.
  • 47. He J.J., Lu G.H., Ding J.N., Distribution, Sources and Risk Assessment of PAHs, PBDEs and PCBs in Surface Sediments from Northern Taihu Lake, J. Environ. Health, 30, 699-702, 2013.
  • 48. Ontiveros-Cuadras J.F., Ruiz-Fernández A.C., SanchezCabeza J.A., Sericano J., Pérez-Bernal L.H., PáezOsuna F., Dunbar R.B., Mucciarone D.A., Recent History of Persistent Organic Pollutants (PAHs, PCBs, PBDEs) in Sediments from A Large Tropical Lake, J. Hazard. Mater., 368, 264-273, 2019.
  • 49. Zhang W., Zhang S., Wan C., Yue D., Ye Y., Wang X., Source Diagnostics of Polycyclic Aromatic Hydrocarbons in Urban Road Runoff, Dust, Rain and Canopy Throughfall, Environ. Pollut., 153 (3), 594-601, 2008
  • 50. Baumard P., Budzinski H., Garrigues P., Polycyclic Aromatic Hydrocarbons in Sediments and Mussels of the Western Mediterranean Sea, Environ. Toxicol. and Chem., 17, 765–776, 1998.
  • 51. El Deeb K.Z., Said T.O., El Naggar M.H., Shreadah M.A., Distribution and Sources of Aliphatic and Polycyclic Aromatic Hydrocarbons in Surface Sediments, Fish and Bivalves of Abu Qir Bay (Egyptian Mediterranean Sea), Bull. Environ. Contam. Toxicol., 78, 373-379, 2007.
  • 52. Pies C., Hoffmann B., Petrowsky J., Yang Y., Ternes T.A., Hofmann T., Characterization and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) in River Bank Soils, Chemosphere, 72 (10), 1594-1601, 2008.
  • 53. Yunker M.B., Macdonald R.W., Vingarzan R., Mitchell R.H., Goyette D., Sylvestre S., PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios As Indicators of PAH Source and Composition, Organic Geochem., 33 (4), 489-515, 2002.
  • 54. De La Torre-Roche R.J., Lee W.Y., Campos-Díaz S.I., Soil-Borne Polycyclic Aromatic Hydrocarbons in El Paso, Texas: Analysis of A Potential Problem in the United States/Mexico Border Region, J. Hazard. Mater., 163 (2-3), 946-958, 2009.
  • 55. USEPA, Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates, Duluth: Office of Research and Development, EPA600/R-94/024, 1994.
  • 56. Chapman P.M., Current Approaches to Developing Sediment Quality Criteria, Environ. Toxicol. and Chem., 8, 589-599, 1989.
  • 57. Long E.R., MacDonald D.D., Smith S.L., Calder F.D., Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments, Environ. Manag., 19, 81–97, 1995.
  • 58. Buchman M.F., NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, 1-38, 2008.
  • 59. MacDonald D.D., Carr R.S., Calder F.D., Long E.R., Ingersoll C.G., Development and Evaluation of Sediment Quality Guidelines for Florida Coastal Waters, Ecotoxicol., 5, 253-278, 1996.
  • 60. FDEP, Approach to the assessment of sediment quality in Florida coastal waters, Florida Department of Environmental Protection, Vol I-Development and Evaluation of Sediment Quality Assessment Guidelines, Prepared for FDEP, Office of Water Policy, Tallahassee, FL, by MacDonald Environmental Sciences, Ltd., Ladysmith, British Columbia, Canada, 1994.
APA Canlı O (2022). Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. , 1453 - 1468. 10.17341/gazimmfd.953925
Chicago Canlı Oltan Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. (2022): 1453 - 1468. 10.17341/gazimmfd.953925
MLA Canlı Oltan Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. , 2022, ss.1453 - 1468. 10.17341/gazimmfd.953925
AMA Canlı O Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. . 2022; 1453 - 1468. 10.17341/gazimmfd.953925
Vancouver Canlı O Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. . 2022; 1453 - 1468. 10.17341/gazimmfd.953925
IEEE Canlı O "Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi." , ss.1453 - 1468, 2022. 10.17341/gazimmfd.953925
ISNAD Canlı, Oltan. "Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi". (2022), 1453-1468. https://doi.org/10.17341/gazimmfd.953925
APA Canlı O (2022). Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1453 - 1468. 10.17341/gazimmfd.953925
Chicago Canlı Oltan Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no.3 (2022): 1453 - 1468. 10.17341/gazimmfd.953925
MLA Canlı Oltan Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.37, no.3, 2022, ss.1453 - 1468. 10.17341/gazimmfd.953925
AMA Canlı O Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022; 37(3): 1453 - 1468. 10.17341/gazimmfd.953925
Vancouver Canlı O Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2022; 37(3): 1453 - 1468. 10.17341/gazimmfd.953925
IEEE Canlı O "Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37, ss.1453 - 1468, 2022. 10.17341/gazimmfd.953925
ISNAD Canlı, Oltan. "Tekirdağ iline içme suyu sağlayan bazı baraj gölü/gölet yüzey sedimanlarında PAH, PCB ve OCP düzeylerinin belirlenmesi ve risk değerlendirmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/3 (2022), 1453-1468. https://doi.org/10.17341/gazimmfd.953925