Yıl: 2021 Cilt: 45 Sayı: 5 Sayfa Aralığı: 268 - 280 Metin Dili: İngilizce DOI: 10.3906/fiz-2108-15 İndeks Tarihi: 03-06-2022

Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts

Öz:
We have measured the current–voltage-temperature (I-V-T) characteristics of the Au/n-GaAs/In Schottky barrier diodes (SBDs) to introduce their thermal sensitivity mechanism. The forward bias voltage variation with temperature (thermal sensitivity) of this SBDs has been studied at different constant current levels. The diode showed high and decisive thermal sensitivity up to a current level of 0.10 pA. The bias voltage-temperature (V-T) curves of the SBD have showed an excellent linear behavior at all current levels. The slope dV/dT = α or the thermal sensitivity coefficient α from the V-T curves decreased from 3.42 mV/K at 0.10 pA to 1.31 mV/K at 10 mA with increasing current level. Furthermore, the α versus current graph of the diode has given a straight line from 0.10 pA to 10 mA whose intercept α0 and slope dα/dI values have been obtained as 2.65 mV/K and -0.081 mV/(AK). The linearity of the voltage vs temperature and the α vs current graphs is a very crucial key factor of a good thermal sensor in the thermal sensitivity
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] S. Demirezen, H.G. Cetinkaya, M. Kara, F. Yakuphanoglu and S. Altındal, Synthesis, electrical and photo-sensing characteristics of theAl/(PCBM/NiO: ZnO)/p-Si nanocomposite structure, Sensors and Actuators A: Physical 317, 112449 (2021). doi: 10.1016/j.sna.2020.112449
  • [2] A. Türüt, On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts, Turkish Journal of Physics 44, 302–347 (2020). doi: 10.3906/fiz-2007-11
  • [3] E.H. Rhoderick, Metal-semiconductor contacts, E. H. IEE Proceeding, Solid State and Electron Devices 129 (1982). doi: 10.1049/ip-i-1.1982.0001
  • [4] M.S. Gorji and K. Y. Cheong, Embedded nanoparticles in schottky and ohmic contacts: A review, Crit. Rev. Solid State Mater Sci. 40, 197-222 (2015). doi: 10.1080/10408436.2014.940444
  • [5] G. Brezeanu, F. Draghici, F. Craciunioiu, C. Boianceanu, F. Bernea, F. Udrea, D. Puscasu and I. Rusu, 4H-SiC Schottky diodes for temperature sensing applications in harsh environments, Materials Science Forum 679–680, 575–578 (2011). doi: 10.4028/www.scientific.net/MSF.679-680.575
  • [6] G. Pristavu, G. Brezeanu, R. Pascu, F. Drăghici and M. Bădilă, Characterization of non-uniform Ni/4H-SiC Schottky diodes for improved responsivity in high-temperature sensing, Materials Science in Semiconductor Processing 94, 64–69, (2019). doi: 10.1016/j.mssp.2019.01.018
  • [7] Q. Guo, F. Lu, Q. Tan, T. Zhou, J. Xiong and W. Zhang, Al2O3 -based a-IGZO Schottky Diodes for temperature sensing, Sensors 19, 224 (2019). doi: 10.3390/s19020224.
  • [8] N. Marcano, A. Singh and F. Perez, Voltage-temperature characteristics of W/n-GaAs Schottky diodes activated by the constant forward current: application as temperature sensors, Proceedings of the second IEEE International Caracas Conference on Devices, Circuits and Systems (Cat. No.98TH8350), 88-91 (1998). doi: 10.1109/ICCDCS.1998.705812.
  • [9] N.G. Filonov, A Stable Temperature Sensor Based on GaAs Structures with Schottky Barriers, Instruments and Experimental Techniques 45, 412–415, (2002). doi: 10.1023/A:1016088110238.
  • [10] V. Kumar, S. Pawar, A.S. Maan and J. Akhtar, Diameter dependent thermal sensitivity variation trend in Ni/4HSiC Schottky diode temperature sensors, Journal of Vacuum Science & Technology B 33, 052207 (2015). doi: 10.1116/1.4929890
  • [11] V. Kumar, J. Verma, A.S. Maan and J. Akhtar, Epitaxial 4H–SiC based Schottky diode temperature sensors in ultra-low current range, Vacuum 182, 109590, (2020). doi: 10.1016/j.vacuum.2020.109590.
  • [12] L. Di Benedetto, G.D. Licciardo, S. Rao, G. Pangallo, F.G. Della Corte and A. Rubino, V2O5/4H-SiC Schottky Diode Temperature Sensor: Experiments and Model, in IEEE Transactions on Electron Devices 65, 687-694 (2018). doi: 10.1109/TED.2017.2785234.
  • [13] S. Rao, L. Di Benedetto, G. Pangallo, A. Rubino, S. Bellone and F.G. Della Corte, 85-440 K Temperature Sensor Based on a 4H-SiC Schottky Diode, IEEE Sensors Journal 16, 6537–6542, (2016). doi: 10.1109/JSEN.2016.2591067.
  • [14] F. Draghici, G. Brezeanu, G. Pristavu and R. Pascu, 400 o C Sensor Based on Ni/4H-SiC Schottky Diode for Reliable Temperature Monitoring in Industrial Environments, Sensors 19, 2384, (2019). doi: 10.3390/s19102384.
  • [15] R. Pascu, G. Pristavu, G. Brezeanu, F. Draghici, P. Godignon, C. Romanitan, M. Serbanescu and A. Tulbure, 60–700 K CTAT and PTAT Temperature Sensors with 4H-SiC Schottky Diodes, Sensors 21, 942, (2021). doi: 10.3390/s21030942
  • [16] S.J. Min, M.C. Shin, N.T. Nguyen, J.M. Oh and S.M. Koo, High-performance temperature sensors based on dual 4H-SiC JBS and SBD devices, Materials 13, 1–8 (2020). doi: 10.3390/ma13020445
  • [17] L. Li, J. Chen, X. Gu, X. Li, T. Pu and J.P. Ao, Temperature sensor using thermally stable TiN anode GaN Schottky barrier diode for high power device application, Superlattices and Microstructures 123, 274–279 (2018). doi: 10.1016/j.spmi.2018.09.007
  • [18] X. Li, T. Hoshi, L. Li, T. Pu, T. Zhang, T. Xie, X. Li, J.P. Ao, GaN Schottky barrier diode with thermally stable nickel nitride electrode deposited by reactive sputtering, Materials Science in Semiconductor Processing 93, 1–5 (2019). doi: 10.1016/j.mssp.2018.12.018
  • [19] X. Li, T. Pu, X. Li, L. Li and J.P. Ao, Correlation between Anode Area and Sensitivity for the TiN/GaN Schottky Barrier Diode Temperature Sensor, IEEE Transactions on Electron Devices 67, 1171–1175 (2020). doi: 10.1109/TED.2020.2968358
  • [20] G. Perez, G. Chicot, Y. Avenas, P. Lefranc, P.O. Jeannin, D. Eon and N. Rouger, Integrated temperature sensor with diamond Schottky diodes using a thermosensitive parameter, Diamond and Related Materials 78, 83–87 (2017). doi: 10.1016/j.diamond.2017.08.008
  • [21] V. Kumar, A.S. Maan and J. Akhtar, Barrier height inhomogeneities induced anomaly in thermal sensitivity of Ni/4H-SiC Schottky diode temperature sensor, J Vac Sci Technol. B, Nanotechnol Microelectron Mater Process Meas Phenom. 32, 041203 (2014). doi: 10.1116/1.4884756
  • [22] M. Missous, E.H. Rhoderick and K.E. Singer, Thermal stability of epitaxial Al/GaAs Schottky barriers prepared by molecular-beam epitaxy, J. Appl. Phys. 59, 3189-3195 (1986). doi: 10.1063/1.336900
  • [23] S. Zhu, X. Qu and B. Li, Schottky barrier characteristics of ternary silicide Co1–xNixSi2 on n-Si(100) contacts formed by solid phase reaction of multilayer, Solid State Electronics 48, 1205–1209 (2004). doi: 10.1016/j.sse.2004.02.006
  • [24] A.F. Özdemir, T. Göksu, N. Yıldırım and A. Turut, Effects of measurement temperature and metal thickness on Schottky diode characteristics, Physica B: Condensed Matter 616, 413125 (2021). doi: 10.1016/j.physb.2021.413125
  • [25] M. Biber, Ö. Güllü, S. Forment, R.L. Van Meirhaeghe and A. Türüt, The effect of Schottky metal thickness on barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky diodes, Semiconductor Science and Technology 21, 1–5 (2006). doi: 10.1088/0268-1242/21/1/001
  • [26] V.R: Reddy and C.J. Choi, Microstructural and interface properties of Au/SrTiO3 (STO)/n-GaN heterojunction with an e-beam evaporated high-k STO interlayer, Journal of Alloys and Compounds 823, 153775 (2020). doi: 10.1016/j.jallcom.2020.153775
  • [27] A. Turut, D.E. Yıldız, A. Karabulut and I. Orak, Electrical characteristics of atomic layer deposited Au/Ti/HfO2/nGaAs MIS diodes in the wide temperature range, J Mater Sci Mater Electron 31, 7839-7849 (2020). doi: 10.1007/s10854-020-03322-w
  • [28] A.R. Deniz, The analyzing of I-V performance of PbO2/n-Si heterojunction in the wide temperature range, Journal of Alloys and Compounds 888, 161523 (2021). doi: 10.1016/j.jallcom.2021.161523
  • [29] Z.J. Horváth, Semiconductor nanocrystals in dielectrics: optoelectronic and memory applications of related siliconbased MIS devices, Current Applied Physics 6, 145-148 (2006). doi: 10.1016/j.cap.2005.07.028
  • [30] J. Osvald, T. Lalinskı and G. Vanko, High temperature current transport in gate oxides based (GaN)/AlGaN/GaN Schottky diodes, Applied Surface Science 461, 206-211 (2018). doi: 10.1016/j.apsusc.2018.06.113
  • [31] R.T. Tung, From NiSi2 experiments to density functional theory calculations: How the Schottky barrier mystery was solved, J. Vac. Sci. Technol. A 39, 020803, (2021). doi: 10.1116/6.0000689
  • [32] E. Dobročka and J. Osvald, Influence of barrier height distribution on the parameters of Schottky diodes, Applied Physics Letter 65, 575-577 (1994). doi: 10.1063/1.112300
  • [33] S. Chand and J. Kumar, On the existence of a distribution of barrier heights in Pd2Si/Si Schottky diodes, Journal of Applied Physics 80, 288-294 (1996). doi: 10.1063/1.362818
  • [34] A.F. Hamida, Z. Ouennoughi, A. Sellai, R. Weiss and H. Ryssel, Barrier inhomogeneities of tungsten Schottky diodes on 4H-SiC, Semiconductor Science and Technology 23, 6 (2008). doi: 10.1088/0268-1242/23/4/045005
  • [35] B. Abay, G. Çankaya, H.S. Güder, H. Efeoğlu and Y. K. Yoğurtçu, Barrier characteristics of Cd/p-GaTe Schottky diodes based on I-V-T measurements, Semiconductor Science and Technology 18, 75-81 (2003). doi: 10.1088/0268- 1242/18/2/302
  • [36] A. Kumar, K.K. Sharma, S. Chand and A. Kumar, Investigation of barrier inhomogeneities in I-V and C-V characteristics of Ni/n-TiO2/p-Si/Al heterostructure in wide temperature range, Superlattices and Microstructures 122, 304-315 (2018). doi: 10.1016/j.spmi.2018.07.034
  • [37] A. Baltakesmez, S. Tekmen and B. Güzeldir, Temperature dependent current- and capacitance-voltage characteristics of W/n-Si structures with two-dimensional WS 2 and three-dimensional WO 3 interfaces deposited by RF sputtering technique, Materials Science in Semiconductor Processing 118, 105204 (2020). doi: 10.1016/j.mssp.2020.105204
  • [38] P.G. McCafferty, A. Sellai, P. Dawson and H. Elabd, Barrier characteristics of PtSi/p-Si Schottky diodes as determined from I-V-T measurements, Solid-State Electronics 39, 583-592 (1996). doi: 10.1016/0038-1101(95)00162- X
  • [39] O.F. Yüksel, N. Tugluoğlu, H. Şafak, Z. Nalçacıgil, M. Kuş et al., Analysis of temperature dependent electrical properties of Au/perylene-diimide/n-Si Schottky diodes, Thin Solid Films 534,614-620 (2013). doi: 10.1016/j.tsf.2013.02.042
  • [40] M. Keskin M, A. Akkaya, E. Ayyıldız, A. Uygun Öksüz and M. Özbay Karakuş, Investigation of the temperaturedependent electrical properties of Au/PEDOT:WO3/p-Si hybrid device, Journal of Materials Science Electron 30, 16676-16686 (2019). doi: 10.1007/s10854-019-02048-8
  • [41] R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory, Physical Review B 45, 13509- 13523 (1992). doi: 10.1103/PhysRevB.45.13509
  • [42] Ö.S. Aniltürk and R. Turan, Electrical transport at a non-ideal CrSi2-Si junction, Solid-State Electron 44, 41-48 (2000). doi: 10.1016/S0038-1101(99)00204-X
  • [43] Z.J. Horváth, E. Ayyıldız, V. Rakovics, H. Cetin and B. Põdör, Schottky contacts to InP, Physica Status Solidi C 2, 1423-1427 (2005). doi: 10.1002/pssc.200460479
  • [44] F. Iucolano, F. Roccaforte, F. Giannazzo and V. Raineri, Barrier inhomogeneity and electrical properties of PtGaN Schottky contacts, Journal of Applied Physics 102, 1-8 (2007). doi: 10.1063/1.2817647
  • [45] N. Kavasoglu, A.S. Kavasoglu and B. Metin, A different approach to solar cell simulation, Materials Research Bulletin 70, 804-808 (2015). doi: 10.1016/j.materresbull.2015.06.007
  • [46] Ç. Güçlü, A.F. Özdemir and Ş. Altindal, Double exponential I–V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range, Applied Physics A 122, 1032 (2016). doi: 10.1007/s00339-016-0558-x
  • [47] T. Tunç, Ş. Altındal, I. Uslu, L. Dökme and H. Uslu, Temperature dependent current–voltage (I–V) characteristics of Au/n-Si (111) Schottky barrier diodes with PVA(Ni,Zn-doped) interfacial layer, Mater. Sci. Semicond. Process. 14, 139-145 (2011). doi: 10.1016/j.mssp.2011.01.018
  • [48] P.R. Sekhar Reddy, V. Janardhanam, K.H. Shim et al., Temperature dependent Schottky barrier characteristics of Al/n-type Si Schottky barrier diode with Au–Cu phthalocyanine interlayer, Thin Solid Films 713, 138343 (2020). doi: 10.1016/j.tsf.2020.138343
  • [49] W. Huang, T. Lin, C. Horng and Y. Li, Materials Science in Semiconductor Processing The electrical characteristics of Ni / n-GaSb Schottky diode, Mater. Sci. Semicond. Process. 16, 418-423 (2013). doi: 10.1016/j.mssp.2012.08.011
  • [50] S. Duman, B. Gürbulak, S. Dogan and A. Türüt, Electrical characteristics and inhomogeneous barrier analysis of Au-Be/p-InSe:Cd Schottky barrier diodes, Microelectronic Engineering 86, 106-110 (2009). doi: 10.1016/j.mee.2008.10.004
  • [51] B. Sürücü B, H.H. Güllü, M. Terlemezoglu, D.E. Yıldız and M. Parlak, Determination of current transport characteristics in Au-Cu/CuO/n-Si Schottky diodes, Physica B: Condensed Matter 579, 246-253 (2019). doi: 10.1016/j.physb.2019.06.024
  • [52] A. Tataroglu and Ş. Altındal, The distribution of barrier heights in MIS type Schottky diodes from currentvoltage- temperature (I-V-T) measurements, Journal of Alloys and Compounds 479, 893-897 (2009). doi: 10.1016/j.jallcom.2009.01.098
  • [53] H. Durmuş, H. Ş. Kılıç, S.Y. Gezgin and Ş. Karataş, Analysis of current-voltage-temperature and capacitancevoltage temperature characteristics of Re/n-Si Schottky contacts, Silicon 10, 361-369 (2018). doi: 10.1007/s12633- 016-9456-2
  • [54] A. Akkaya, L. Esmer, T. Karaaslan, H. Çetin and E. Ayyıldız, Electrical characterization of NiAl0.09Ga0.91N Schottky barrier, Materials Science in Semiconductor Processing 28, 127-134 (2014). doi: 10.1016/j.mssp.2014.07.053
  • [55] M. Sağlam, B. Güzeldir, A. Türüt and D. Ekinci, Role of Reduced Graphene Oxide-Gold Nanoparticle Composites on Au/Au-RGO/p-Si/Al Structure Depending on Sample Temperature, J. Electron Mater 50, 4752-4761 (2021). doi: 10.1007/s11664-021-09017-0
  • [56] H. Helal, Z. Benamara, M. Ben Arbia, A. Rabehi, A.C. Chaouche and H. Maaref, Electrical behavior of n-GaAs based Schottky diode for different contacts: Temperature dependence of current-voltage, Int. J. Numer. Model Electron Networks, Devices Fields 34, e2916 (2021). doi: 10.1002/jnm.2916
APA TURUT A, EFEOĞLU H (2021). Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. , 268 - 280. 10.3906/fiz-2108-15
Chicago TURUT Abdulmecit,EFEOĞLU Hasan Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. (2021): 268 - 280. 10.3906/fiz-2108-15
MLA TURUT Abdulmecit,EFEOĞLU Hasan Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. , 2021, ss.268 - 280. 10.3906/fiz-2108-15
AMA TURUT A,EFEOĞLU H Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. . 2021; 268 - 280. 10.3906/fiz-2108-15
Vancouver TURUT A,EFEOĞLU H Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. . 2021; 268 - 280. 10.3906/fiz-2108-15
IEEE TURUT A,EFEOĞLU H "Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts." , ss.268 - 280, 2021. 10.3906/fiz-2108-15
ISNAD TURUT, Abdulmecit - EFEOĞLU, Hasan. "Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts". (2021), 268-280. https://doi.org/10.3906/fiz-2108-15
APA TURUT A, EFEOĞLU H (2021). Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. Turkish Journal of Physics, 45(5), 268 - 280. 10.3906/fiz-2108-15
Chicago TURUT Abdulmecit,EFEOĞLU Hasan Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. Turkish Journal of Physics 45, no.5 (2021): 268 - 280. 10.3906/fiz-2108-15
MLA TURUT Abdulmecit,EFEOĞLU Hasan Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. Turkish Journal of Physics, vol.45, no.5, 2021, ss.268 - 280. 10.3906/fiz-2108-15
AMA TURUT A,EFEOĞLU H Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. Turkish Journal of Physics. 2021; 45(5): 268 - 280. 10.3906/fiz-2108-15
Vancouver TURUT A,EFEOĞLU H Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts. Turkish Journal of Physics. 2021; 45(5): 268 - 280. 10.3906/fiz-2108-15
IEEE TURUT A,EFEOĞLU H "Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts." Turkish Journal of Physics, 45, ss.268 - 280, 2021. 10.3906/fiz-2108-15
ISNAD TURUT, Abdulmecit - EFEOĞLU, Hasan. "Thermal sensitivity from current-voltage-measurement temperaturecharacteristics in Au/n-GaAs Schottky contacts". Turkish Journal of Physics 45/5 (2021), 268-280. https://doi.org/10.3906/fiz-2108-15