Yıl: 2021 Cilt: 29 Sayı: 1 Sayfa Aralığı: 349 - 369 Metin Dili: İngilizce DOI: 10.3906/elk-2003-140 İndeks Tarihi: 04-06-2022

Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations

Öz:
Robot grippers are widely used in a variety of areas requiring automation, precision, and safety. The perfor- mance of the grippers is directly associated with their design. In this study, four different multiobjective metaheuristic algorithms including particle swarm optimization (MOPSO), artificial algae algorithm (MOAAA), grey wolf optimizer (MOGWO) and nondominated sorting genetic algorithm (NSGA-II) were applied to two different configurations of highly nonlinear and multimodal robot gripper design problem including two objective functions and a certain number of con- straints. The first objective is to minimize the difference between minimum and maximum forces for the assumed range in which the gripper ends are displaced. The second objective is force transmission rate that is the ratio of the actuator force to the minimum holding force obtained at the gripper ends. The performance of the optimizers was examined separately for each configuration by using pareto-front curves and hyper-volume (HV) metric. Performances of the op- timizers on the specific problem were compared with results of previously proposed algorithms under equal conditions. With respect to these comparisons, the best-known results of the configurations were obtained. Furthermore, the pareto optimal solutions are thoroughly examined to present the relationship between design variables and objective functions.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1] Pham D, Heginbotham W. Robot Grippers. Bedford: IFS, 1986. [2] Tai K, El-Sayed AR, Shahriari M, Biglarbegian M, Mahmud S. State of the art robotic grippers and applications. Robotics 2016; 5(2): 11. doi:10.3390/robotics5020011
  • [3] Chen FY. Gripping mechanisms for industrial robots: an overview. Mechanism and Machine Theory 1982; 17(5): 299-311. doi:10.1016/0094-114X(82)90011-8
  • [4] Osyczka A, Krenich S, Karas K. Optimum design of robot grippers using genetic algorithms. In: Proceedings of the Third World Congress of Structural and Multidisciplinary Optimization (WCSMO); Buffalo, New York, USA; 1999. pp. 241-243.
  • [5] Osyczka A. Evolutionary Algorithms for Single and Multicriteria Design Optimization. Berlin: Springer Verlag, 2002.
  • [6] Saravanan R, Ramabalan S, Ebenezer NGR, Dharmaraja C. Evolutionary multi criteria design optimization of robot grippers. Applied Soft Computing 2009; 9(1): 159-172. doi:10.1016/J.ASOC.2008.04.001
  • [7] Datta R, Deb K. Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation; Dublin, Ireland; 2011. pp.1843-1850. doi:10.1145/2001576.2001823
  • [8] Rao RV, Savsani VJ, Vakharia DP. Teaching-learning-based optimization: A novel method for constrained mechani- cal design optimization problems. CAD Computer Aided Design 2011; 43(3): 303-315. doi:10.1016/j.cad.2010.12.015
  • [9] Datta R, Pradhan S, Bhattacharya B. Analysis and design optimization of a robotic gripper using multi- objective genetic algorithm. Transactions on Systems, Man, and Cybernetics: Systems 2016; 46(1): 16-26. doi:10.1109/TSMC.2015.2437847
  • [10] Avder A, Şahin İ, Dörterler M. Multi-objective design optimization of the robot grippers with SPEA2. International Journal of Intelligent Systems and Applications in Engineering 2019; 7(2): 83-87. doi:10.18201//ijisae.2019252785
  • [11] Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks. Transactions on Robotics and Automation 1989; 5(3): 269-279.
  • [12] Bicchi A, Kumar V. Robotic grasping and contact: a review. In: IEEE International Conference on Robotics and Automation; San Francisco, CA, USA; 2000. pp.348-353. doi:10.1109/ROBOT.2000.844081
  • [13] Lanni C, Ceccarelli M. An optimization problem algorithm for kinematic design of mechanisms for two-finger grippers. The Open Mechanical Engineering Journal 2009; 3(1): 49-62. doi:10.2174/1874155x00903010049
  • [14] Li QM, Qin QH, Zhang SW, Deng H. Optimal design for heavy forging robot grippers. Applied Mechanics and Materials 2010; 44(47): 743-747. doi:10.4028/www.scientific.net/AMM.44-47.743
  • [15] Dao TP, Huang SC. An optimal study of a gripper compliant mechanism based on Fuzzy-Taguchi method. Applied Mechanics and Materials 2013; 418: 141-144. doi:10.4028/www.scientific.net/AMM.418.141
  • [16] Pahwa T, Gupta S, Bansal V, Prasad B, Kumar D. Analysis & design optimization of laterally driven poly-silicon electro-thermal micro-gripper for micro-objects manipulation. In: COMSOL Conference; Bangalore; 2012.
  • [17] Abu Zitar RA. Optimum gripper using ant colony intelligence. Industrial Robot: An International Journal 2005; 32(1): 17-23. doi:10.1108/01439910510573246
  • [18] Ciocarlie M, Hicks FM, Stanford S. Kinetic and dimensional optimization for a tendon-driven gripper. In: 2013 IEEE International Conference on Robotics and Automation; Karlsruhe, Germany; 2013. pp.2751-2758. doi:10.1109/ICRA.2013.6630956
  • [19] Holland, JH. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Cambridge, Massachusetts, USA: MIT press, 1992.
  • [20] De Jong, K. Learning with genetic algorithms: an overview. Machine Learning 1988; 3(2-3): 121-138.
  • [21] Whitley, D. A genetic algorithm tutorial. Statistics and Computing 1994; 4(2): 65-85.
  • [22] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of International Conference on Neural Networks; Perth, WA, Australia; 1995. pp. 1942-1948. doi:10.1109/ICNN.1995.488968
  • [23] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software 2014; 69: 46-61. doi:10.1016/J.ADVENGSOFT.2013.12.007
  • [24] Uymaz SA, Tezel G, Yel E. Artificial algae algorithm (AAA) for nonlinear global optimization. Applied Soft Computing Journal 2015; 31: 153-171. doi:10.1016/j.asoc.2015.03.003
  • [25] Babalik A, Ozkis A, Uymaz SA, Kiran MS. A multi-objective artificial algae algorithm. Applied Soft Computing Journal 2018; 68: 377-395. doi:10.1016/j.asoc.2018.04.009
  • [26] Tawhid, MA, Savsani, V. A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems. Applied Intelligence 2018; 48(10): 3762-3781. doi:10.1007/s10489-018-1170-x
  • [27] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 1999; 3(4): 257-271. doi:10.1109/4235.797969
  • [28] Bradstreet L. The hypervolume indicator for multi-objective optimisation: calculation and use. PhD, University of Western Australia, Perth, Australia, 2011.
APA Dörterler M, ATILA Ü, Durgut R, sahin i (2021). Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. , 349 - 369. 10.3906/elk-2003-140
Chicago Dörterler Murat,ATILA ÜMIT,Durgut Rafet,sahin ismail Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. (2021): 349 - 369. 10.3906/elk-2003-140
MLA Dörterler Murat,ATILA ÜMIT,Durgut Rafet,sahin ismail Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. , 2021, ss.349 - 369. 10.3906/elk-2003-140
AMA Dörterler M,ATILA Ü,Durgut R,sahin i Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. . 2021; 349 - 369. 10.3906/elk-2003-140
Vancouver Dörterler M,ATILA Ü,Durgut R,sahin i Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. . 2021; 349 - 369. 10.3906/elk-2003-140
IEEE Dörterler M,ATILA Ü,Durgut R,sahin i "Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations." , ss.349 - 369, 2021. 10.3906/elk-2003-140
ISNAD Dörterler, Murat vd. "Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations". (2021), 349-369. https://doi.org/10.3906/elk-2003-140
APA Dörterler M, ATILA Ü, Durgut R, sahin i (2021). Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. Turkish Journal of Electrical Engineering and Computer Sciences, 29(1), 349 - 369. 10.3906/elk-2003-140
Chicago Dörterler Murat,ATILA ÜMIT,Durgut Rafet,sahin ismail Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. Turkish Journal of Electrical Engineering and Computer Sciences 29, no.1 (2021): 349 - 369. 10.3906/elk-2003-140
MLA Dörterler Murat,ATILA ÜMIT,Durgut Rafet,sahin ismail Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. Turkish Journal of Electrical Engineering and Computer Sciences, vol.29, no.1, 2021, ss.349 - 369. 10.3906/elk-2003-140
AMA Dörterler M,ATILA Ü,Durgut R,sahin i Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. Turkish Journal of Electrical Engineering and Computer Sciences. 2021; 29(1): 349 - 369. 10.3906/elk-2003-140
Vancouver Dörterler M,ATILA Ü,Durgut R,sahin i Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations. Turkish Journal of Electrical Engineering and Computer Sciences. 2021; 29(1): 349 - 369. 10.3906/elk-2003-140
IEEE Dörterler M,ATILA Ü,Durgut R,sahin i "Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations." Turkish Journal of Electrical Engineering and Computer Sciences, 29, ss.349 - 369, 2021. 10.3906/elk-2003-140
ISNAD Dörterler, Murat vd. "Analyzing the performances of evolutionary multi-objective optimizers on design optimization of robot gripper configurations". Turkish Journal of Electrical Engineering and Computer Sciences 29/1 (2021), 349-369. https://doi.org/10.3906/elk-2003-140