Yıl: 2022 Cilt: 15 Sayı: 2 Sayfa Aralığı: 167 - 175 Metin Dili: Türkçe DOI: 10.17671/gazibtd.1051738 İndeks Tarihi: 29-07-2022

Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli

Öz:
Video görüntülerinde gerçek zamanlı yüz tanıma ve görüntü akışı içerisinde etiketlenmesi birçok alanda yüksek öneme sahip bir konudur. Son yıllarda, video görüntülerinde gerçek zamanlı yüz tanıma problemlerinde derin sinir ağları başarılı bir şekilde kullanılmaktadır. Ancak video görüntülerinde yer alan küçük ölçekli yüzlerin tespiti ve aynı zamanda model yanıt süresinin düşürülmesi karşılaşılan önemli zorluklardır. Gerçekleştirilen bu çalışmada, video görüntülerinde gerçek zamanlı yüz tanıma ve zamanın tespiti için yeni bir derin öğrenme modeli önerilmiştir. Yapılan deneysel çalışmalarda önerilen Evrişimli Sinir Ağı tabanlı modelin MTCNN, OPENCV-CNN, HOG+SVM, SSD-CAFFEMODEL modellerine göre daha yüksek performansa ve daha yüksek doğruluk oranına sahip olduğu gösterilmiştir.
Anahtar Kelime: zaman işaretleme yüz tanıma yüz tespiti derin öğrenme

A New Deep Learning Model for Real-Time Face Recognition and Time Marking in Video Footage

Öz:
Real-time face recognation and tagging in the video stream are high importance in many areas. In recent years, deep neural networks have been successfully used in real-time facial recognition problems in video images. However, detection of small-scale faces in video images and at the same time reducing response time of model are significant challenges. In this study, new deep learning model is suggested for real-time face recognition and time detection in video images. In experimental studies, the proposed CNN-based model has been shown to have higher performance and more accuracy rate than MTCNN, OPENCV-CNN, HOG+SVM, SSD-CAFFEMODEL models.
Anahtar Kelime: face recognation

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] H.S. Dadi & G. M. Pillutla, “Improved face recognition rate using HOG features and SVM classifier”, IOSR Journal of Electronics and Communication Engineering, 11(4), 34-44,2018.
  • [2] O. Yıldız, “Derin öğrenme yöntemleriyle dermoskopi görüntülerinden melanom tespiti: Kapsamlı bir çalışma”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 2241- 2260, 2019.
  • [3] K. Zhang, Z. Zhang, Z. Li, & Y. Qiao, “Joint face detection and alignment using multitask cascaded convolutional networks”, IEEE Signal Processing Letters, 23(10), 1499-1503, 2016.
  • [4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, & A. C. Berg, “Ssd: Single shot multibox detector”, European conference on computer vision, 21-37, 2016.
  • [5] WS. McCulloch and W. Pitts., “A logical calculus of the ideas immanent in nervous activity”, The bulletin of mathematical biophysics, 5(4), 115–133, 1943.
  • [6] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation, 9(8), 735–1780, 1997.
  • [7] S. Lohr , “The age of big data”, New York Times, 11(2012), 2012.
  • [8] P. Viola and M. Jones , “Rapid object detection using a boosted cascade of simple features”, in Computer Vision and Pattern Recognition. Proceedings of the 2001 IEEE Computer Society Conference (CVPR) on, vol. 1, 511–518, 2001.
  • [9] E. Özbaysar and E. Borandağ , “Vehicle plate tracking system”, in 2018 26th Signal Processing and Communications Applications Conference (SIU), IEEE, 1–4, 2018.
  • [10] X. Luo, R. Shen, J. Hu, J. Deng, L. Hu & Q. Guan, “A deep convolution neural network model for vehicle recognition and face recognition”, Procedia Computer Science, 107, 715-720, 2017.
  • [11] K. B. Pranav, & J. Manikandan, “Design and Evaluation of a RealTime Face Recognition System using Convolutional Neural Networks”, Procedia Computer Science, 171, 1651-1659, 2020.
  • [12] Z. Mahmood, N. Muhammad, N. Bibi, & T. Ali, “A review on state-of-the-art face recognition approaches”, Fractals, 25(02), 2017.
  • [13] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database for studying face recognition in unconstrained environments”, Technical Report, 07- 49, 2007.
  • [14] S. Sharma, K. Shanmugasundaram, & S. K. Ramasamy, “FAREC—CNN based efficient face recognition technique using Dlib”, In International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), 192-195, IEEE, 2016.
  • [15] F. Schroff, D. Kalenichenko, & J. Philbin, “Facenet: A unified embedding for face recognition and clustering”, In Proceedings of the IEEE conference on computer vision and pattern recognition, 815-823, 2015.
  • [16] K. He, X. Zhang, S. Ren, & J. Sun, “Deep residual learning for image recognition”, in Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778, 2016.
  • [17] H. Jiang, & E. Learned-Miller, “Face detection with the faster RCNN”, 12th IEEE international conference on automatic face & gesture recognition, 650-657, IEEE, 2017.
  • [18] I. Kalinovskii, & V. Spitsyn, “Compact convolutional neural network cascade for face detection”, In Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT), 1576,375–387, 2016.
  • [19] K. M. Sagayam, “CNN-based Mask Detection System Using OpenCV and MobileNetV2”, In 2021 3rd International Conference on Signal Prosessin and Communication (ICPSC), 115-119, 2021.
APA Göze H, YILDIZ O (2022). Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. , 167 - 175. 10.17671/gazibtd.1051738
Chicago Göze Hüseyin,YILDIZ Oktay Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. (2022): 167 - 175. 10.17671/gazibtd.1051738
MLA Göze Hüseyin,YILDIZ Oktay Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. , 2022, ss.167 - 175. 10.17671/gazibtd.1051738
AMA Göze H,YILDIZ O Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. . 2022; 167 - 175. 10.17671/gazibtd.1051738
Vancouver Göze H,YILDIZ O Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. . 2022; 167 - 175. 10.17671/gazibtd.1051738
IEEE Göze H,YILDIZ O "Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli." , ss.167 - 175, 2022. 10.17671/gazibtd.1051738
ISNAD Göze, Hüseyin - YILDIZ, Oktay. "Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli". (2022), 167-175. https://doi.org/10.17671/gazibtd.1051738
APA Göze H, YILDIZ O (2022). Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. Bilişim Teknolojileri Dergisi, 15(2), 167 - 175. 10.17671/gazibtd.1051738
Chicago Göze Hüseyin,YILDIZ Oktay Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. Bilişim Teknolojileri Dergisi 15, no.2 (2022): 167 - 175. 10.17671/gazibtd.1051738
MLA Göze Hüseyin,YILDIZ Oktay Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. Bilişim Teknolojileri Dergisi, vol.15, no.2, 2022, ss.167 - 175. 10.17671/gazibtd.1051738
AMA Göze H,YILDIZ O Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. Bilişim Teknolojileri Dergisi. 2022; 15(2): 167 - 175. 10.17671/gazibtd.1051738
Vancouver Göze H,YILDIZ O Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli. Bilişim Teknolojileri Dergisi. 2022; 15(2): 167 - 175. 10.17671/gazibtd.1051738
IEEE Göze H,YILDIZ O "Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli." Bilişim Teknolojileri Dergisi, 15, ss.167 - 175, 2022. 10.17671/gazibtd.1051738
ISNAD Göze, Hüseyin - YILDIZ, Oktay. "Video Görüntülerinde Gerçek Zamanlı Yüz Tanıma ve Zaman İşaretleme için Yeni Bir Derin Öğrenme Modeli". Bilişim Teknolojileri Dergisi 15/2 (2022), 167-175. https://doi.org/10.17671/gazibtd.1051738