Yıl: 2022 Cilt: 39 Sayı: 1 Sayfa Aralığı: 13 - 21 Metin Dili: İngilizce DOI: 10.4274/tjh.galenos.2021.2021.0607 İndeks Tarihi: 21-06-2022

JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles

Öz:
Objective: Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) have a high propensity for thrombosis, which has been attributed to increased blood counts, endothelial cell (EC) dysfunction, and inflammation. The presence of the JAK2V617F mutation in the ECs of MPN patients has been confirmed, but the consequences of EC involvement by JAK2V617F in the pathogenesis of thrombosis are unclear. Endothelial microparticles (EMPs) released from ECs play an important role in endothelial dysfunction and also in the intercellular exchange of biological signals and information. Several studies have revealed that patients with JAK2V617F and a thrombosis history have increased numbers of MPs in their circulation. Materials and Methods: The current study utilized a lentiviral transduction model of JAK2 wild type (JAK2wt) or JAK2V617F encoding green fluorescent protein (GFP) into human umbilical vein ECs to determine the effect of JAK2V617F on ECs. EC infected with JAK2V617F, JAK2WT, and only-GFP were tested after two days of culture. Results: The proteins of ECs that potentially play a role in the development of thrombosis, including endothelial protein C receptor, thrombomodulin, and tissue factor, were detected by flow cytometry analysis with no statistical significance. Increased annexin-V uptake of JAK2V617F and JAK2wt ECs compared to GFP-alone ECs was detected. The EMP production in the supernatants of the EC culture was investigated. Genotyping of the EMPs revealed the presence of genomic DNA and RNA fragments in EMP cargos. JAK2V617F-positive DNA was detected in EMPs released from JAK2V617F-infected ECs and EMPs were shown to carry the genotype of the cell of origin. Conclusion: JAK2V617F-positive EMPs were shown for the first time in the literature. This novel research provides the first evidence that EMPs might regulate neighboring and distant cells via their cargo materials. Thus, the direct effect of JAK2V617F on ECs and their functions suggests that different mechanisms might play a role in the pathogenesis of thrombosis in MPNs.
Anahtar Kelime:

JAK2V617F-Pozitif Endotel Hücreleri Apoptozu İndükler ve JAK2V617F-Pozitif Mikropartikül Salınımı Yapar

Öz:
Amaç: Philadelphia kromozom negatif miyeloproliferatif neoplazi’ler (MPN), yüksek tromboz riski taşıyarak inflamasyon, endotel hücre (EH) disfonksiyonu ve artan kan sayıları ile karakterize edilirler. Önceki çalışmalarda, MPN hastalarının EH’de JAK2V617F mutasyonunun varlığı tespit edilmiştir. Ancak tromboz patogenezinde JAK2V617F mutasyonu taşıyan EH’in rolü belirsizdir. EH’den salınan endotel mikropartikülleri (EMP’ler) biyolojik sinyallerin ve hücreler arası bilginin değişiminde ve endotel disfonksiyonunda önemli rol oynarlar. Birçok çalışmada, JAK2V617F mutasyonu taşıyan ve tromboz öyküsü olan hastaların dolaşımlarında artan sayıda mikropartikül olduğunu ortaya konulmuştur. Gereç ve Yöntemler: Çalışmamızda, JAK2V617F’nin EH üzerindeki etkisini belirlemek için yeşil fluoresan proteini (GFP) ile işaretli JAK2 yabanıl tip (JAK2WT) veya JAK2V617F’li lentiviral transdüksiyon modeli kullanılarak insan göbek kordonundan elde edilmiş endotel hücre hattı (HUVEC) enfekte edildi. JAK2V617F, JAK2WT ve sadece- GFP ile enfekte EH’ler iki gün süren kültür sonrasında test edildi. Bulgular: Akım ölçer analizinde, Endotelyal protein C reseptörü, trombomodulin ve doku faktörü dahil olmak üzere tromboz gelişiminde potansiyel rol oynayan EH proteinlerinde istatistiksel anlamlılık olmadığı tespit edildi. JAK2V617F ve JAK2WT enfekte EH’de annexin-V alımının sadece-GFP enfekte EH’ye kıyasla arttığı tespit edildi. EH kültüründen elde edilen süpernatanlarda EMP üretimi araştırıldı. EMP genotiplemesinde EMP kargolarında genomik DNA ve RNA fragmanları varlığı tespit edildi. JAK2V617F enfekte EH’den salınan EMP’lerde JAK2V617F pozitif DNA tespit edildi ve EMP’lerin köken aldıkları hücre genotipini taşıdığı gösterildi. Sonuç: Bu çalışma ile literatürde ilk defa, JAK2V617F pozitif EMP’ler gösterilmiştir. Bu yeni araştırma, EMP’lerin taşıdıkları kargolar aracılığıyla komşu ve uzaktaki hücreleri düzenleme potansiyeli olduğunu göstermektedir. Bu sayede JAK2V617F’nin EH ve işlevleri üzerindeki direkt etkisi ile MPN’lerde tromboz patogenezinde farklı mekanizmaların rolü olduğunu ileri sürer.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kaushansky K, Zhan H. The regulation of normal and neoplastic hematopoiesis is dependent on microenvironmental cells. Adv Biol Regul 2018;69:11-15.
  • 2. Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010;107:1047- 1057.
  • 3. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol 2004;15:1983-1992.
  • 4. Barbui T, Finazzi G, F langa A. Myeloproliferative neoplasms and thrombosis. Blood 2013;122:2176-2184.
  • 5. Barbui T, Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F, Randi ML, Bertozzi I, Gisslinger H, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, Vannucchi AM, Tefferi A. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood 2012;120:5128-5133.
  • 6. Falanga A, Marchetti M. Thrombosis in myeloproliferative neoplasms. Semin Thromb Hemost 2014;40:348-358.
  • 7. Farina M, Russo D, Hoffman R. The possible role of mutated endothelial cells in myeloproliferative neoplasms. Haematologica 2021;106:2813-2823.
  • 8. Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R. The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd- Chiari syndrome. Blood 2009;113:5246-5249.
  • 9. Sozer S, Ishii T, Fiel MI, Wang J, Wang X, Zhang W, Godbold J, Xu M, Hoffman R. Human CD34+ cells are capable of generating normal and JAK2V617F positive endothelial like cells in vivo. Blood Cells Mol Dis 2009;43:304-312.
  • 10. Sozer S, Wang X, Zhang W, Fiel MI, Ishii T, Wang J, Wisch N, Xu M, Hoffman R. Circulating angiogenic monocyte progenitor cells are reduced in JAK2V617F high allele burden myeloproliferative disorders. Blood Cells Mol Dis 2008;41:284-291.
  • 11. Teofili L, Martini M, Iachininoto MG, Capodimonti S, Nuzzolo ER, Torti L, Cenci T, Larocca LM, Leone G. Endothelial progenitor cells are clonal and exhibit the JAK2V617F mutation in a subset of thrombotic patients with Phnegative myeloproliferative neoplasms. Blood 2011;117:2700-2707.
  • 12. Oppliger Leibundgut E, Horn MP, Brunold C, Pfanner-Meyer B, Marti D, Hirsiger H, Tobler A, Zwicky C. Hematopoietic and endothelial progenitor cell trafficking in patients with myeloproliferative diseases. Haematologica 2006;91:1465-1472.
  • 13. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007;109:1801-1809.
  • 14. Falanga A, Marchetti M. Thrombotic disease in the myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program 2012;2012:571- 581.
  • 15. Guy A, Gourdou-Latyszenok V, Le Lay N, Peghaire C, Kilani B, Dias JV, Duplaa C, Renault MA, Denis C, Villeval JL, Boulaftali Y, Jandrot-Perrus M, Couffinhal T, James C. Vascular endothelial cell expression of JAK2V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica 2019;104:70-81.
  • 16. Qin Y, Wang X, Zhao C, Wang C, Yang Y. The impact of JAK2V617F mutation on different types of thrombosis risk in patients with essential thrombocythemia: a meta-analysis. Int J Hematol 2015;102:170-180.
  • 17. Edelmann B, Gupta N, Schnoeder TM, Oelschlegel AM, Shahzad K, Goldschmidt J, Philipsen L, Weinert S, Ghosh A, Saalfeld FC, Nimmagadda SC, Müller P, Braun-Dullaeus R, Mohr J, Wolleschak D, Kliche S, Amthauer H, Heidel FH, Schraven B, Isermann B, Müller AJ, Fischer T. JAK2-V617F promotes venous thrombosis through β1/β2 integrin activation. J Clin Invest 2018;128:4359-4371.
  • 18. Koçana CÇ, Toprak SF, Sözer S. Extracellular genetic materials and their application in clinical practice. Cancer Genet 2021;252-253:48-63. 19. Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 2011;31:27-33.
  • 20. Distler JH, Pisetsky DS, Huber LC, Kalden JR, Gay S, Distler O. Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum 2005;52:3337-3348.
  • 21. Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Żuber Z, Wojtkiewicz M, Wojtkiewicz J. Role of microparticles in the pathogenesis of inflammatory joint diseases. Int J Mol Sci 2019;20:5453.
  • 22. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009;19:43-51.
  • 23. Barteneva NS, Fasler-Kan E, Bernimoulin M, Stern JN, Ponomarev ED, Duckett L, Vorobjev IA. Circulating microparticles: square the circle. BMC Cell Biol 2013;14:23.
  • 24. Palmisano G, Jensen SS, Le Bihan MC, Lainé J, McGuire JN, Pociot F, Larsen MR. Characterization of membrane-shed microvesicles from cytokinestimulated beta-cells using proteomics strategies. Mol Cell Proteomics 2012;11:230-243.
  • 25. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007;110:2440-2448.
  • 26. Peterson DB, Sander T, Kaul S, Wakim BT, Halligan B, Twigger S, Pritchard KA Jr, Oldham KT, Ou JS. Comparative proteomic analysis of PAI-1 and TNFalpha- derived endothelial microparticles. Proteomics 2008;8:2430-2446.
  • 27. Markiewicz M, Richard E, Marks N, Ludwicka-Bradley A. Impact of endothelial microparticles on coagulation, inflammation, and angiogenesis in age-related vascular diseases. J Aging Res 2013;2013:734509. 28. Liu Y, Zhang R, Qu H, Wu J, Li L, Tang Y. Endothelial microparticles activate endothelial cells to facilitate the inflammatory response. Mol Med Rep 2017;15:1291-1296.
  • 29. Mooberry MJ, Key NS. Microparticle analysis in disorders of hemostasis and thrombosis. Cytometry A 2016;89:111-122.
  • 30. Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, Freyssinet JM. Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 2006;26:2594-2604.
  • 31. Sabatier F, Roux V, Anfosso F, Camoin L, Sampol J, Dignat-George F. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 2002;99:3962-3970.
  • 32. Jy W, Minagar A, Jimenez JJ, Sheremata WA, Mauro LM, Horstman LL, Bidot C, Ahn YS. Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis. Front Biosci 2004;9:3137-3144.
  • 33. Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest 2004;34:392- 401.
  • 34. Zhang W, Qi J, Zhao S, Shen W, Dai L, Han W, Huang M, Wang Z, Ruan C, Wu D, Han Y. Clinical significance of circulating microparticles in Ph(-) myeloproliferative neoplasms. Oncol Lett 2017;14:2531-2536.
  • 35. Trappenburg MC, van Schilfgaarde M, Marchetti M, Spronk HM, ten Cate H, Leyte A, Terpstra WE, Falanga A. Elevated procoagulant microparticles expressing endothelial and platelet markers in essential thrombocythemia. Haematologica 2009;94:911-918.
  • 36. Aswad MH, Kissová J, Rihova L, Zavrelova J, Ovesná P, Penka M. High level of circulating microparticles in patients with BCR/ABL negative myeloproliferative neoplasm - a pilot study. Klin Onkol 2019;32:109-116.
  • 37. Marchetti M, Tartari CJ, Russo L, Panova-Noeva M, Leuzzi A, Rambaldi A, Finazzi G, Woodhams B, Falanga A. Phospholipid-dependent procoagulant activity is highly expressed by circulating microparticles in patients with essential thrombocythemia. Am J Hematol 2014;89:68-73.
  • 38. Duchemin J, Ugo V, Ianotto JC, Lecucq L, Mercier B, Abgrall JF. Increased circulating procoagulant activity and thrombin generation in patients with myeloproliferative neoplasms. Thromb Res 2010;126:238-242.
  • 39. Holy EW, Akhmedov A, Luscher TF, Tanner FC. Berberine, a natural lipidlowering drug, exerts prothrombotic effects on vascular cells. J Mol Cell Cardiol 2009;46:234-240.
  • 40. Kissova J, Ovesna P, Bulikova A, Zavrelova J, Penka M. Increasing procoagulant activity of circulating microparticles in patients with Philadelphia-negative myeloproliferative neoplasms: a single-centre experience. Blood Coagul Fibrinolysis 2015;26:448-453.
  • 41. Charpentier A, Lebreton A, Rauch A, Bauters A, Trillot N, Nibourel O, Tintillier V, Wemeau M, Demory JL, Preudhomme C, Jude B, Lecompte T, Cambier N, Susen S. Microparticle phenotypes are associated with driver mutations and distinct thrombotic risks in essential thrombocythemia. Haematologica 2016;101:e365-e368.
  • 42. Poisson J, Tanguy M, Davy H, Camara F, El Mdawar MB, Kheloufi M, Dagher T, Devue C, Lasselin J, Plessier A, Merchant S, Blanc-Brude O, Souyri M, Mougenot N, Dingli F, Loew D, Hatem SN, James C, Villeval JL, Boulanger CM, Rautou PE. Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. J Clin Invest 2020;130:2630-2643.
  • 43. Göksu A, Hekimoğlu H, Sözer Tokdemir S. The effect of JAK2V617F mutation to the endothelial cells and the expression profiles of SOCS1-4 genes in myeloproliferative neoplasms. Istanbul University Institute of Health Sciences Journal of Advanced Research in Health Sciences 2020;3:135-147.
  • 44. Tunç BS, Toprak F, Toprak SF, Sozer S. In vitro investigation of growth factors including MGF and IGF-1 in neural stem cell activation, proliferation, and migration. Brain Res 2021;1759:147366.
  • 45. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 2001;25:402- 408.
  • 46. van Ierssel SH, Van Craenenbroeck EM, Conraads VM, Van Tendeloo VF, Vrints CJ, Jorens PG, Hoymans VY. Flow cytometric detection of endothelial microparticles (EMP): effects of centrifugation and storage alter with the phenotype studied. Thromb Res 2010;125:332-339.
  • 47. Ishii T, Zhao Y, Shi J, Sozer S, Hoffman R, Xu M. T cells from patients with polycythemia vera elaborate growth factors which contribute to endogenous erythroid and megakaryocyte colony formation. Leukemia 2007:2433-2441.
  • 48. Castiglione M, Jiang YP, Mazzeo C, Lee S, Chen JS, Kaushansky K, Yin W, Lin RZ, Zheng H, Zhan H. Endothelial JAK2V617F mutation leads to thrombosis, vasculopathy, and cardiomyopathy in a murine model of myeloproliferative neoplasm. J Thromb Haemost 2020;18:3359-3370.
  • 49. Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 2007;5:520-527.
  • 50. Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Mutin M, Sanmarco M, Sampol J, Dignat-George F. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 1999;104:93-102.
  • 51. Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells-- conditional innate immune cells. J Hematol Oncol 2013;6:61.
  • 52. Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, Morey R, Liu J, Roszik J, Clise-Dwyer K, Burks JK, O’Halloran TJ, Laurent LC, Sood AK. Mechanisms of nuclear content loading to exosomes. Sci Adv 2019;5:eaax8849.
  • 53. Cosgrove ME, Suman R, Harrison HJ, Jackson GE, Howard MR, Hitchcock IS. Endothelial JAK2V617F expression drives inflammation and cellular senescence; new evidence for the roles of endothelial cells in MPN-related clotting abnormalities? Blood 2016;128:3134
APA Hekimoğlu H, TOPRAK S, Sozer Tokdemir S (2022). JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. , 13 - 21. 10.4274/tjh.galenos.2021.2021.0607
Chicago Hekimoğlu Hilal,TOPRAK SELIN FULYA,Sozer Tokdemir Selcuk JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. (2022): 13 - 21. 10.4274/tjh.galenos.2021.2021.0607
MLA Hekimoğlu Hilal,TOPRAK SELIN FULYA,Sozer Tokdemir Selcuk JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. , 2022, ss.13 - 21. 10.4274/tjh.galenos.2021.2021.0607
AMA Hekimoğlu H,TOPRAK S,Sozer Tokdemir S JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. . 2022; 13 - 21. 10.4274/tjh.galenos.2021.2021.0607
Vancouver Hekimoğlu H,TOPRAK S,Sozer Tokdemir S JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. . 2022; 13 - 21. 10.4274/tjh.galenos.2021.2021.0607
IEEE Hekimoğlu H,TOPRAK S,Sozer Tokdemir S "JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles." , ss.13 - 21, 2022. 10.4274/tjh.galenos.2021.2021.0607
ISNAD Hekimoğlu, Hilal vd. "JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles". (2022), 13-21. https://doi.org/10.4274/tjh.galenos.2021.2021.0607
APA Hekimoğlu H, TOPRAK S, Sozer Tokdemir S (2022). JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. Turkish Journal of Hematology, 39(1), 13 - 21. 10.4274/tjh.galenos.2021.2021.0607
Chicago Hekimoğlu Hilal,TOPRAK SELIN FULYA,Sozer Tokdemir Selcuk JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. Turkish Journal of Hematology 39, no.1 (2022): 13 - 21. 10.4274/tjh.galenos.2021.2021.0607
MLA Hekimoğlu Hilal,TOPRAK SELIN FULYA,Sozer Tokdemir Selcuk JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. Turkish Journal of Hematology, vol.39, no.1, 2022, ss.13 - 21. 10.4274/tjh.galenos.2021.2021.0607
AMA Hekimoğlu H,TOPRAK S,Sozer Tokdemir S JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. Turkish Journal of Hematology. 2022; 39(1): 13 - 21. 10.4274/tjh.galenos.2021.2021.0607
Vancouver Hekimoğlu H,TOPRAK S,Sozer Tokdemir S JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles. Turkish Journal of Hematology. 2022; 39(1): 13 - 21. 10.4274/tjh.galenos.2021.2021.0607
IEEE Hekimoğlu H,TOPRAK S,Sozer Tokdemir S "JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles." Turkish Journal of Hematology, 39, ss.13 - 21, 2022. 10.4274/tjh.galenos.2021.2021.0607
ISNAD Hekimoğlu, Hilal vd. "JAK2V617F-Positive Endothelial Cells Induce Apoptosis and Release JAK2V617F-Positive Microparticles". Turkish Journal of Hematology 39/1 (2022), 13-21. https://doi.org/10.4274/tjh.galenos.2021.2021.0607