Yıl: 2021 Cilt: 18 Sayı: 6 Sayfa Aralığı: 730 - 737 Metin Dili: İngilizce DOI: 10.4274/tjps.galenos.2021.25564 İndeks Tarihi: 22-06-2022

In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations

Öz:
Objectives: Drug repurposing is a highly popular approach to find new indications for drugs, which greatly reduces time and costs for drug design and discovery. Non-selective inhibitors of histone deacetylase (HDAC) isoforms including sirtuins (SIRTs) are effective against conditions like cancer. In this study, we used molecular docking to screen Food and Drug Administration (FDA)-approved drugs to identify a number of drugs with a potential to be repurposed for pan-HDAC and pan-SIRT inhibitor activity. Materials and Methods: The library of FDA-approved drugs was optimized using MacroModel. The crystal structures of HDAC1-4, 6-8, SIRT1-3, 5, 6 were prepared before the library was docked to each structure using Glide, FRED, and AutoDock Vina/PyRx. Consensus scores were derived from the docking scores obtained from each software. Pharmacophore modeling was performed using Phase. Results: Based on the consensus scores, belinostat, bexarotene, and cianidanol emerged as top virtual pan-HDAC inhibitors whereas alosetron, cinacalcet, and indacaterol emerged as virtual pan-SIRT inhibitors. Pharmacophore hypotheses for these virtual inhibitors were also suggested through pharmacophore modeling in agreement with the molecular docking models. Conclusion: The consensus approach enabled selection of the best performing drug molecules according to different software, and good scores against isoforms (virtual pan-HDAC and pan-SIRT inhibitors). The study not only proposes potential drugs to be repurposed for HDAC and SIRTrelated diseases but also provides insights for designing potent de novo derivatives.
Anahtar Kelime:

pan-HDAC ve pan-SIRT İnhibitörleri Olarak İlaçların İn silico Olarak Yeniden Konumlandırılması: Konsensüs Yapı Tabanlı Sanal Tarama ve Farmakofor Modelleme Araştırmaları

Öz:
Amaç: İlaç yeniden konumlandırma, ilaçlar için yeni endikasyonlar bulmak için oldukça popüler bir yaklaşımdır ve ilaç tasarımı ve keşfi için zaman ve maliyetleri büyük ölçüde azaltır. Sirtuinler (SIRT) dahil olmak üzere histon deasetilaz (HDAC) izoformlarının seçici olmayan inhibitörleri, kanser gibi durumlara karşı etkilidir. Bu çalışmada, pan-HDAC ve pan-SIRT inhibitör aktivitesi için yeniden kullanım potansiyeline sahip bir dizi ilacı belirlemek üzere Gıda ve İlaç Dairesi (FDA) onaylı ilaçları taramak için moleküler docking kullanılmıştır. Gereç ve Yöntemler: FDA onaylı ilaçlar kütüphanesi MacroModel ile optimize edilmiştir. HDAC1-4, 6-8, SIRT1-3, 5, 6 yapıları hazırlanarak kütüphane her bir protein yapısına Glide, FRED ve AutoDock Vina/PyRx ile kenetlenmiştir. Konsensüs skorları her yazılımdan elde edilen kenetleme skorlarından türetilmiştir. Farmakofor modelleme Phase ile gerçekleştirilmiştir. Bulgular: Konsensüs skorlarına göre belinostat, beksaroten ve siyanidanol en iyi sanal pan-HDAC inhibitörleri, alosetron, sinakalset ve indakaterol ise en iyi sanal pan-SIRT inhibitörleri olarak öne çıkmıştır. Bu sanal inhibitörler için farmakofor hipotezleri, moleküler yerleştirme docking uyumlu olarak farmakofor modellemesi yoluyla da belirlenmiştir. Sonuç: Konsensüs yaklaşımı, farklı yazılımlara göre en iyi performans gösteren ilaç moleküllerinin seçilmesini ve izoformlara (sanal pan-HDAC ve pan-SIRT inhibitörleri) karşı iyi puanlar alınmasını sağlamıştır. Çalışma, yalnızca HDAC ve SRT ile ilgili hastalıklar için yeniden kullanılabilecek potansiyel ilaçlar önermekle kalmamış, aynı zamanda güçlü de novo türevleri tasarlamak için de yol gösterici olmuştur.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Tang J, Yan H, Zhuang S. Histone deacetylases as targets for treatment of multiple diseases. Clin Sci. 2013;124:651-662.
  • 2. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009;32:591-601.
  • 3. Yoon S, Eom GH. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam Med J. 2016;52:1-11.
  • 4. Barton KM, Archin NM, Keedy KS, Espeseth AS, Zhang YL, Gale J, Wagner FF, Holson EB, Margolis DM. Selective HDAC inhibition for the disruption of latent HIV-1 infection. PLoS One. 2014;9:e102684.
  • 5. Goracci L, Deschamps N, Randazzo GM, Petit C, Dos Santos Passos C, Carrupt PA, Simoes-Pires C, Nurisso A. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors. Sci Rep. 2016;6:29086.
  • 6. Uciechowska U, Schemies J, Neugebauer RC, Huda EM, Schmitt ML, Meier R, Verdin E, Jung M, Sippl W. Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing. ChemMedChem. 2008;3:1965-1976.
  • 7. Liu J, Zhu Y, He Y, Zhu H, Gao Y, Li Z, Zhu J, Sun X, Fang F, Wen H, Li W. Combined pharmacophore modeling, 3D-QSAR and docking studies to identify novel HDAC inhibitors using drug repurposing. J Biomol Struct Dyn. 2020;38:533-547.
  • 8. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41-58.
  • 9. McKinsey TA. Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart. J Mol Cell Cardiol. 2011;51:491-496.
  • 10. Booth L, Roberts JL, Poklepovic A, Kirkwood J, Dent P. HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget. 2017;8:83155-83170.
  • 11. Amengual JE, Clark-Garvey S, Kalac M, Scotto L, Marchi E, Neylon E, Johannet P, Wei Y, Zain J, O’Connor OA. Sirtuin and pan-class I/II deacetylase (DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma. Blood. 2013;122:2104-2113.
  • 12. Park MA, Mitchell C, Zhang G, Yacoub A, Allegood J, Haussinger D, Reinehr R, Larner A, Spiegel S, Fisher PB, Voelkel-Johnson C, Ogretmen B, Grant S, Dent P. Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca(2+)-de novo ceramide-PP2Areactive oxygen species-dependent signaling pathway. Cancer Res. 2010;70:6313-6324.
  • 13. de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics. 2016;8:105.
  • 14. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074-D1082.
  • 15. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J Chem Theory Comput. 2010;6:1509-1519.
  • 16. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739-1749.
  • 17. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for proteinligand complexes. J Med Chem. 2006;49:6177-6196.
  • 18. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47:1750- 1759.
  • 19. McGann M. FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des. 2012;26:897-906.
  • 20. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. ChemInform. 2011;3:33.
  • 21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28:235-242.
  • 22. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221-234.
  • 23. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243-250.
  • 24. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006;20:647-671.
  • 25. Lee HY, Chang CY, Su CJ, Huang HL, Mehndiratta S, Chao YH, Hsu CM, Kumar S, Sung TY, Huang YZ, Li YH, Yang CR, Liou JP. 2-(Phenylsulfonyl) quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase. Eur J Med Chem. 2016;122:92-101.
  • 26. Jones P, Altamura S, De Francesco R, Gallinari P, Lahm A, Neddermann P, Rowley M, Serafini S, Steinkuhler C. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg Med Chem Lett. 2008;18:1814-1819.
  • 27. Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET. Discovery of (2E)-3-{2-butyl-1- [2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylami de (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile. J Med Chem. 2011;54:4694-4720.
  • 28. Mehndiratta S, Wang RS, Huang HL, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP. 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur J Med Chem. 2017;134:13-23.
  • 29. Hai Y, Christianson DW. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol. 2016;12:741-747.
  • 30. Gniadecki R, Assaf C, Bagot M, Dummer R, Duvic M, Knobler R, Ranki A, Schwandt P, Whittaker S. The optimal use of bexarotene in cutaneous T-cell lymphoma. Br J Dermatol. 2007;157:433-440.
  • 31. Fung M, Thornton A, Mybeck K, Wu JHH, Hornbuckle K, Muniz E. Evaluation of the Characteristics of Safety Withdrawal of Prescription Drugs from Worldwide Pharmaceutical Markets-1960 to 1999. Drug Inf J. 2001;35:293-317.
  • 32. Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and inhibitors: Promises, achievements, and challenges. Pharmacol Ther. 2018;188:140- 154.
  • 33. Wang HL, Liu S, Wu CY, Cheng LN, Wang YX, Chen K, Zhou S, Chen Q, Yu YM, Li GB. Interactions between sirtuins and fluorogenic smallmolecule substrates offer insights into inhibitor design. Rsc Advances. 2017;7:36214-36222.
  • 34. Camilleri M, Northcutt AR, Kong S, Dukes GE, McSorley D, Mangel AW. Efficacy and safety of alosetron in women with irritable bowel syndrome: a randomised, placebo-controlled trial. Lancet. 2000;355:1035-1040. 35. Ballinger AE, Palmer SC, Nistor I, Craig JC, Strippoli GF. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev. 2014;12:CD006254.
  • 36. Asonitis N, Kassi E, Kokkinos M, Giovanopoulos I, Petychaki F, Gogas H. Hypercalcemia of malignancy treated with cinacalcet. Endocrinol Diabetes Metab Case Rep. 2017;2017:17-0118.
  • 37. Beeh KM, Derom E, Kanniess F, Cameron R, Higgins M, van As A. Indacaterol, a novel inhaled beta2-agonist, provides sustained 24-h bronchodilation in asthma. Eur Respir J. 2007;29:871-878.
  • 38. Zoete V, Daina A, Bovigny C, Michielin O. SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening. J Chem Inf Model. 2016;56:1399-1404.
  • 39. Sari S. Molecular Modelling and Computer Aided Drug Design: The Skill Set Every Scientist in Drug Research Needs and Can Easily Get. Hujpharm. 2020;40:34-47.
APA SARI S, AVCI A, Kocak Aslan E (2021). In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. , 730 - 737. 10.4274/tjps.galenos.2021.25564
Chicago SARI SUAT,AVCI Ahmet,Kocak Aslan Ebru In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. (2021): 730 - 737. 10.4274/tjps.galenos.2021.25564
MLA SARI SUAT,AVCI Ahmet,Kocak Aslan Ebru In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. , 2021, ss.730 - 737. 10.4274/tjps.galenos.2021.25564
AMA SARI S,AVCI A,Kocak Aslan E In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. . 2021; 730 - 737. 10.4274/tjps.galenos.2021.25564
Vancouver SARI S,AVCI A,Kocak Aslan E In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. . 2021; 730 - 737. 10.4274/tjps.galenos.2021.25564
IEEE SARI S,AVCI A,Kocak Aslan E "In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations." , ss.730 - 737, 2021. 10.4274/tjps.galenos.2021.25564
ISNAD SARI, SUAT vd. "In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations". (2021), 730-737. https://doi.org/10.4274/tjps.galenos.2021.25564
APA SARI S, AVCI A, Kocak Aslan E (2021). In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. Turkish Journal of Pharmaceutical Sciences, 18(6), 730 - 737. 10.4274/tjps.galenos.2021.25564
Chicago SARI SUAT,AVCI Ahmet,Kocak Aslan Ebru In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. Turkish Journal of Pharmaceutical Sciences 18, no.6 (2021): 730 - 737. 10.4274/tjps.galenos.2021.25564
MLA SARI SUAT,AVCI Ahmet,Kocak Aslan Ebru In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. Turkish Journal of Pharmaceutical Sciences, vol.18, no.6, 2021, ss.730 - 737. 10.4274/tjps.galenos.2021.25564
AMA SARI S,AVCI A,Kocak Aslan E In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. Turkish Journal of Pharmaceutical Sciences. 2021; 18(6): 730 - 737. 10.4274/tjps.galenos.2021.25564
Vancouver SARI S,AVCI A,Kocak Aslan E In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations. Turkish Journal of Pharmaceutical Sciences. 2021; 18(6): 730 - 737. 10.4274/tjps.galenos.2021.25564
IEEE SARI S,AVCI A,Kocak Aslan E "In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations." Turkish Journal of Pharmaceutical Sciences, 18, ss.730 - 737, 2021. 10.4274/tjps.galenos.2021.25564
ISNAD SARI, SUAT vd. "In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations". Turkish Journal of Pharmaceutical Sciences 18/6 (2021), 730-737. https://doi.org/10.4274/tjps.galenos.2021.25564