Yıl: 2021 Cilt: 5 Sayı: 1 Sayfa Aralığı: 6 - 10 Metin Dili: İngilizce DOI: 10.46460/ijiea.898795 İndeks Tarihi: 29-07-2022

The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures

Öz:
Effect of different nucleation layer temperatures (LT-GaN growth temperature) on the properties of the subsequent GaN epilayer grown by MOVPE is investigated. In-situ reflectance curves demonstrate that higher LT-GaN growth temperatures cause fast coalescence (shorter transition time) of GaN nucleation islands. Both photoluminescence (PL) and high-resolution x-ray diffraction (HRXRD) are used to demonstrate the influence of LT-GaN growth temperature on optical and structural properties of subsequent GaN epilayer, respectively. It is observed that the change of LT-GaN growth temperature has an effect on both full-width at half-maximum (FWHM) values obtained from the results of HRXRD measurement and yellow luminescence peak intensity. It is seen that the yellow luminescence peak intensities for samples alter with LT-GaN growth temperature.
Anahtar Kelime: Epitaxy Gallium nitride Characterization Metal organic vapor phase epitaxy

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Jain, S., Willander, M., Narayan, J., Overstraeten, R. V., “III–nitrides: Growth, characterization, and properties”, Journal of Applied Physics, 87(3):965-1006, (2000).
  • [2] Demir, I., “Growth temperature dependency of high Al content AlGaN epilayers on AlN/Al2O3 templates”, Cumhuriyet Science Journal, 39(3):728-733, (2018).
  • [3] Demir, I., Li, H., Robin, Y., McClintock, R., Elagoz, S., Razeghi, M., “Sandwich method to grow high quality AlN by MOCVD”, Journal of Physics D: Applied Physics, 51(8):085104 (2018).
  • [4] Demir, I., Robin, Y., McClintock, R., Elagoz, S., Zekentes, K., Razeghi, M., “Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy”, Physica Status Solidi (a), 214(4):1600363 (2017).
  • [5] Fan, X., Xu, S., Li, P., Zhang, J., Peng, R., Zhao, Y., Du, J., Hao, Y., “Nonpolar and semipolar ultraviolet multiple quantum wells on GaN/sapphire”, Materials Science in Semiconductor Processing, 92:103-107 (2019).
  • [6] Genç, M., Sheremet, V., Altuntaş, I., Demir, I., Gür, E., Elagöz, S., Gülseren, O., Özgür, U., Avrutin, V., Morkoç, H., “PECVD grown SiN photonic crystal micro-domes for the light extraction enhancement of GaN LEDs”, Gallium Nitride Materials and Devices XV, International Society for Optics and Photonics, 112800O (2020).
  • [7] Genç, M., Sheremet, V., Elçi, M., Kasapoğlu, A., Altuntaş, I., Demir, I, Eğin, G., Islamoğlu, S., Gür, E., Muzafferoğlu, N., “Distributed contact flip chip InGaN/GaN blue LED; comparison with conventional LEDs”, Superlattices and Microstructures, 128:9-13 (2019).
  • [8] Remesh, N., Kumar, S., Guiney, I., Humphreys, C. J., Raghavan, S., Muralidharan, R., Nath, D.,N., “A Novel Technique to Investigate the Role of Traps in the Off-State Performance of AlGaN/GaN High Electron Mobility Transistor on Si Using Substrate Bias”, Physica Status Solidi (a), 217(7):1900794 (2019).
  • [9] Robin, Y., Ding, K., Demir, I., McClintock, R., Elagoz, S., Razeghi, M., “High brightness ultraviolet light-emitting diodes grown on patterned silicon substrate”, Materials Science in Semiconductor Processing, 90:87-91 (2019).
  • [10] Taya, P., Singh, V., Jana, D., Tyagi, R., Sharma, T., “Optical characterization of InAlN/AlN/InGaN/GaN/sapphire high electron mobility transistor structures”, AIP Conference Proceedings, AIP Publishing LLC, 030467 (2019).
  • [11] Toci, G., Gizzi, L. A., Koester, P., Baffigi, F., Fulgentini, L., Labate, L., Hospodkova, A., Jary, V., Nikl, M., Vannini, M., “InGaN/GaN multiple quantum well for superfast scintillation application: Photoluminescence measurements of the picosecond rise time and excitation density effect”, Journal of Luminescence, 208:119-124 (2019).
  • [12] Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Applied Physics Letters, 48(5):353-355 (1986).
  • [13] Anisimov, A., Wolfson, A., Mokhov, E., “Raman Spectra of Thick Epitaxial GaN Layers Formed on SiC by the Sublimation Sandwich Method”, Semiconductors, 52(9):1225-1227 (2018).
  • [14] Klad’ko, V. P., Chornen’kii, S.V., Naumov, A. V., Komarov, A. V., Tacano, M., Sveshnikov, Y. N., Vitusevich, S., Belyaev, A. E., “Interface structural defects and photoluminescence properties of epitaxial GaN and AlGaN/GaN layers grown on sapphire”, Semiconductors, 40(9):1060-1065 (2006).
  • [15] Timoshnev, S., Mizerov, A., Sobolev, M., Nikitina, E., “Growth of GaN Layers on Si (111) Substrates by Plasma-Assisted Molecular Beam Epitaxy”, Semiconductors, 52(5):660-663 (2018).
  • [16] Mohammad, S. N., Salvador, A. A., Morkoc, H., “Emerging gallium nitride based devices”, Proceedings of the IEEE, 83(10):1306-1355 (1995).
  • [17] Altuntas, I. Demir, I., Kasapoğlu, A. E., Mobtakeri, S., Gür, E., Elagoz, S., “The effects of two-stage HT-GaN growth with different V/III ratios during 3D–2D transition”, Journal of Physics D: Applied Physics, 51(3):035105 (2017).
  • [18] Demir, I., Altuntas, I., Kasapoğlu, A., Mobtakeri, S., Guer, E., Elagoz, S., “Microstructural evolution of MOVPE grown GaN by the carrier gas”, Semiconductors, 52(16):2030-2038 (2018).
  • [19] Ito, T., Sumiya, M., Takano, Y., Ohtsuka, K., Fuke, S., “Influence of thermal annealing on GaN buffer layers and the property of subsequent GaN layers grown by metalorganic chemical vapor deposition”, Japanese Journal of Applied Physics, 38(2R):649 (1999).
  • [20] Kim, K. S., Oh, C. S., Lee, K. J., Yang, G. M., Hong, C. H., Lim, K. Y., Lee, H. J., Yoshikawa, A., “Effects of growth rate of a GaN buffer layer on the properties of GaN on a sapphire substrate”, Journal of Applied Physics, 85(12):8441-8444 (1999).
  • [21] Miyake, H., Motogaito, A., Hiramatsu, K., “Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy”, Japanese Journal of Applied Physics, 38(9A):L1000 (1999).
  • [22] Yi, M., Lee, H., Kim, D., Park, S., Noh, D., Kim, C., Je, J., “Effects of growth temperature on GaN nucleation layers”, Applied Physics Letters, 75(15):2187-2189 (1999).
  • [23] Koleske, D. D., Henry, R. L., Twigg, M. E., Culbertson, J. C., Binari, S. C., Wickenden, A. E., Fatemi, M., “Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC”, Applied Physics Letters, 80(23):4372-4374 (2002).
  • [24] Nakamura, S., “In situ monitoring of GaN growth using interference effects”, Japanese Journal of Applied Physics, 30(8R):1620 (1991).
  • [25] Kim, S. , Oh, J., Kang, J., Kim, D., Won, J., Kim, J. W., Cho, H. K., “Two-step growth of high quality GaN using V/III ratio variation in the initial growth stage”, Journal of Crystal Growth, 262(1-4):7-13 (2004).
  • [26] Shang, L., Lu, T., Zhai, G., Jia, Z., Zhang, H., Ma, S., Li, T., Liang, J., Liu, X., Xu, B., “The evolution of a GaN/sapphire interface with different nucleation layer thickness during two-step growth and its influence on the bulk GaN crystal quality", RSC Advances, 5(63):51201-51207 (2015).
  • [27] Moram, M., Vickers, M., “X-ray diffraction of III-nitrides”, Reports on Progress in Physics, 72(3):036502 (2009).
  • [28] Heinke, H., Kirchner, V., Einfeldt, S., Hommel, D., “X-ray diffraction analysis of the defect structure in epitaxial GaN”, Applied Physics Letters, 77(14):2145-2147 (2000).
  • [29] Sugiura, L., Itaya, K., Nishio, J., Fujimoto, H., Kokubun, Y., “Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers”, Journal of Applied Physics, 82(10):4877-4882 (1997).
  • [30] Ning, X., Chien, F., Pirouz, P., Yang, J., Khan, M. A., “Growth defects in GaN films on sapphire: The probable origin of threading dislocations”, Journal of Materials Research, 11(3):580-592 (1996).
  • [31] Pittet, P., Lu, G. N., Galvan, J. M., Bluet, J. M., Anas, I., Giraud, J. Y., Balosso, J., “PL characterization of GaN scintillator for radioluminescence-based dosimetry”, Optical Materials, 31(10):1421-1424 (2009).
  • [32] Zhang, H., Reber, A. C., Geng, L., Rabayda, D., Wu, H., Luo, Z., Yao, J., Khanna, S. N., “Formation of Al+ (C6H6) 13: The Origin of Magic Number in Metal–Benzene Clusters Determined by the Nature of the Core”, CCS Chemistry, 1(5):571-581 (2019).
  • [33] Robins, L. H., Bertness, K. A., Barker, J. M., Sanford, N. A., Schlager, J. B., “Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. II. Sub-band-gap luminescence and electron irradiation effects”, Journal of Applied Physics, 101(11):113506 (2007).
APA ALTUNTAS I, ELAGOZ S (2021). The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. , 6 - 10. 10.46460/ijiea.898795
Chicago ALTUNTAS ISMAIL,ELAGOZ Sezai The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. (2021): 6 - 10. 10.46460/ijiea.898795
MLA ALTUNTAS ISMAIL,ELAGOZ Sezai The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. , 2021, ss.6 - 10. 10.46460/ijiea.898795
AMA ALTUNTAS I,ELAGOZ S The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. . 2021; 6 - 10. 10.46460/ijiea.898795
Vancouver ALTUNTAS I,ELAGOZ S The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. . 2021; 6 - 10. 10.46460/ijiea.898795
IEEE ALTUNTAS I,ELAGOZ S "The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures." , ss.6 - 10, 2021. 10.46460/ijiea.898795
ISNAD ALTUNTAS, ISMAIL - ELAGOZ, Sezai. "The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures". (2021), 6-10. https://doi.org/10.46460/ijiea.898795
APA ALTUNTAS I, ELAGOZ S (2021). The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. International Journal of Innovative Engineering Applications, 5(1), 6 - 10. 10.46460/ijiea.898795
Chicago ALTUNTAS ISMAIL,ELAGOZ Sezai The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. International Journal of Innovative Engineering Applications 5, no.1 (2021): 6 - 10. 10.46460/ijiea.898795
MLA ALTUNTAS ISMAIL,ELAGOZ Sezai The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. International Journal of Innovative Engineering Applications, vol.5, no.1, 2021, ss.6 - 10. 10.46460/ijiea.898795
AMA ALTUNTAS I,ELAGOZ S The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. International Journal of Innovative Engineering Applications. 2021; 5(1): 6 - 10. 10.46460/ijiea.898795
Vancouver ALTUNTAS I,ELAGOZ S The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. International Journal of Innovative Engineering Applications. 2021; 5(1): 6 - 10. 10.46460/ijiea.898795
IEEE ALTUNTAS I,ELAGOZ S "The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures." International Journal of Innovative Engineering Applications, 5, ss.6 - 10, 2021. 10.46460/ijiea.898795
ISNAD ALTUNTAS, ISMAIL - ELAGOZ, Sezai. "The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures". International Journal of Innovative Engineering Applications 5/1 (2021), 6-10. https://doi.org/10.46460/ijiea.898795