Yıl: 2021 Cilt: 45 Sayı: 6 Sayfa Aralığı: 1651 - 1677 Metin Dili: İngilizce DOI: 10.3906/kim-2110-15 İndeks Tarihi: 30-06-2022

Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique

Öz:
Supramolecular solvents (SUPRASs) have rapidly gained more attention as a potential substitute to organic solvents in the sample preparation and preconcentration process. The essential properties of SUPRAS solvents (e.g., multiple binding sites, different polarity microenvironments, the opportunity to tailor their properties, etc.) these qualities offer numerous opportunities to advance innovative sample preparation and pretreatment platforms compared to the traditional solvents. Among these qualities, certain importance is placed on theoretical and practical knowledge. That has assisted in making significant developments in SUPRAS that advance our understanding of the processes behind SUPRA’S formation. The SUPRA–solute interactions that drive extractions are explored in this context to develop knowledge-based extraction techniques. This review mainly focused on the significant application of supramolecular-based solvents (SUPRASs) in microextraction techniques. SUPRASs-based liquid-phase microextraction (LPME) is an excellent tool for extracting, simple preparation, and preconcentration from complex environmental samples. SUPRASs-LPME has a wide range of applications for analyzing food, environmental samples, pharmaceuticals, and biological samples.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Steed JW, Turner, DR, Wallace K. Core concepts in supramolecular chemistry and nanochemistry: John Wiley & Sons; 2007.
  • 2. Lehn J-M. Toward self-organization and complex matter Science 2002; 295: 2400-2403. doi: 10.1126/science.1071063
  • 3. Laishram R, Bhowmik S, Maitra U. White light emitting soft materials from off-the-shelf ingredients Journal of Materials Chemistry C 2015; 3: 5885-5889. doi: 10.1039/C5TC01072A
  • 4. De Silva AP, Moody TS, Wright GD. Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools Analyst 2009; 134: 2385-2393. doi: 10.1039/B912527M
  • 5. Bünzli J-CG. Lanthanide luminescence for biomedical analyses and imaging Chemical Reviews 2010; 110: 2729-2755. doi: 10.1021/cr900362e
  • 6. Buerkle LE, Rowan SJ. Supramolecular gels formed from multi-component low molecular weight species Chemical Society Reviews 2012; 41: 6089-6102. doi: 10.1039/C2CS35106D
  • 7. Sutar P, Maji TK. Coordination polymer gels: soft metal–organic supramolecular materials and versatile applications Chemical Communications 2016; 52: 8055-8074. doi: 10.1039/C6CC01955B
  • 8. Surender EM, Comby S, Cavanagh BL, Brennan O, Lee TC et al. Two-photon luminescent bone imaging using europium nanoagents Chem 2016; 1: 438-455. doi: 10.1016/j.chempr.2016.08.011
  • 9. Bünzli J-CG, Comby S, Chauvin A-S, Vandevyver CD. New opportunities for lanthanide luminescence Journal of rare earths 2007; 25: 257- 274. doi: 10.1016/S1002-0721(07)60420-7
  • 10. Kitchen J, Gunnlaugsson T. Supramolecular chemistry: from sensors and imaging agents to functional mononuclear and polynuclear selfassembly lanthanide complexes. The Rare Earth Elements: Fundamentals and Applications: John Wiley & Sons, Ltd.; 2013, p. 481-494.
  • 11. James TD. Frontiers in Chemistry 2017; 5: 83. doi: 10.3389/fchem.2017.00083
  • 12. Barry DE, Caffrey DF, Gunnlaugsson T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands Chemical Society Reviews 2016; 45: 3244-3274. doi: 10.1039/ C6CS00116E
  • 13. Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Artificial molecular machines Chemical Reviews 2015; 115: 10081-10206. doi: 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X
  • 14. Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M, Yaghi OM. Secondary building units, nets and bonding in the chemistry of metal– organic frameworks Chemical Society Reviews 2009; 38: 1257-1283. doi: 10.1039/B817735J
  • 15. Gilman NV. Analysis for science librarians of the 2016 nobel prize in physiology or medicine. The Life and Work of Yoshinori Ohsumi Science & Technology Libraries 2017; 36: 1-19. doi: 10.1080/0194262X.2016.1273814
  • 16. Kay ER, Leigh DA. Rise of the molecular machines. Angewandte Chemie International Edition 2015; 54: 10080-10088. doi: 10.1002/ anie.201503375
  • 17. Byrne JP, Blasco S, Aletti AB, Hessman G, Gunnlaugsson T. Formation of self‐templated 2, 6‐bis (1, 2, 3‐triazol‐4‐yl) pyridine [2] catenanes by triazolyl hydrogen bonding: selective anion hosts for phosphate. Angewandte Chemie International Edition 2016; 55: 8938-8943. doi: 10.1016/S1002-0721(07)60420-7
  • 18. De Greef TF, Smulders MM, Wolffs M, Schenning AP, Sijbesma RP et al. Supramolecular polymerization. Chemical Reviews 2009; 109: 5687-5754. doi: 10.1021/cr900181u
  • 19. Fouquey C, Lehn JM, Levelut AM. Molecular recognition directed self‐assembly of supramolecular liquid crystalline polymers from complementary chiral components. Advanced Materials 1990; 2: 254-257. doi: 10.1002/adma.19900020506
  • 20. Lehn J-M, Mascal M, Decian A, Fischer J. Molecular recognition directed self-assembly of ordered supramolecular strands by cocrystallization of complementary molecular components. Journal of the Chemical Society, Chemical Communications 1990; 479-481. doi: 10.1039/ C39900000479
  • 21.Stupp SI, LeBonheur V, Walker K, Li L-S, Huggins KE et al. Supramolecular materials: self-organized nanostructures. Science 1997; 276: 384-389. doi: 10.1126/science.276.5311.384
  • 22. Gulik-Krzywicki T, Fouquey C, Lehn J. Electron microscopic study of supramolecular liquid crystalline polymers formed by molecularrecognition-directed self-assembly from complementary chiral components . Proceedings of the National Academy of Sciences 1993; 90: 163-167. doi: 10.1073/pnas.90.1.163
  • 23. Stupp SI, Son S, Lin H-C, Li L. Synthesis of two-dimensional polymers. Science 1993; 259: 59-63. doi: 10.1126/science.259.5091.59
  • 24. Beijer FH, Kooijman H, Spek AL, Sijbesma RP, Meijer E. Self‐complementarity achieved through quadruple hydrogen bonding. Angewandte Chemie International Edition 1998; 37: 75-78. doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<75::AID-ANIE75>3.0.CO;2-R
  • 25. Kuhn H, Braslavsky S, Schmidt R. Chemical actinometry (IUPAC technical report). Pure and Applied Chemistry 2004; 76: 2105-2146. doi: 10.1351/pac200476122105
  • 26. Ofner C, Klech-Gelotte C, Swarbrick J, Boylan J. Gels and jellies. Encyclopedia of Pharmaceutical Technology 2002: 1327-1339.
  • 27. Watanabe H, Yamaguchi N, Tanaka H. Extraction and spectrophotometric determination of zinc with 1-(2-pyridylazo)-2-naphthol and a nonionic surfactant. Bunseki kagaku 1979; 28: 366-370.
  • 28. García-Prieto A, Lunar L, Rubio S, Pérez-Bendito D. Decanoic acid reverse micelle-based coacervates for the microextraction of bisphenol A from canned vegetables and fruits. Analytica Chimica Acta 2008; 617: 51-58. doi: 10.1016/j.aca.2008.01.061
  • 29. Cardeñosa V, Lunar ML, Rubio S. Generalized and rapid supramolecular solvent-based sample treatment for the determination of annatto in food. Journal of Chromatography A 2011; 1218: 8996-9002. doi: 10.1016/j.chroma.2011.10.041
  • 30. Hinze WL, Pramauro E. A critical review of surfactant-mediated phase separations (cloud-point extractions): theory and applications . Critical Reviews in Analytical Chemistry 1993; 24: 133-177. doi: 10.1080/10408349308048821
  • 31. López-Jiménez FJ, Rubio S, Pérez-Bendito D. Single-drop coacervative microextraction of organic compounds prior to liquid chromatography: theoretical and practical considerations. Journal of Chromatography A 2008; 1195: 25-33. doi: 10.1016/j.chroma.2008.05.002
  • 32. Casero I, Sicilia D, Rubio S, Perez-Bendito D. An acid-induced phase cloud point separation approach using anionic surfactants for the extraction and preconcentration of organic compounds. Analytical Chemistry 1999; 71: 4519-4526. doi: 10.1021/ac990106g
  • 33. Saitoh T, Hinze WL. Concentration of hydrophobic organic compounds and extraction of protein using alkylammoniosulfate zwitterionic surfactant mediated phase separations (cloud point extractions). Analytical Chemistry 1991; 63: 2520-2525.
  • 34. Jin X, Zhu M, Conte ED. Surfactant-mediated extraction technique using alkyltrimethylammonium surfactants: Extraction of selected chlorophenols from river water. Analytical Chemistry 1999; 71: 514-517. doi: 10.2166/ws.2017.010
  • 35. Ruiz F-J, Rubio S, Perez-Bendito D. Water-induced coacervation of alkyl carboxylic acid reverse micelles: phenomenon description and potential for the extraction of organic compounds. Analytical Chemistry 2007; 79: 7473-7484. doi: 10.1021/ac0708644
  • 36. Ruiz F-J, Rubio S, Pérez-Bendito D. Tetrabutylammonium-induced coacervation in vesicular solutions of alkyl carboxylic acids for the extraction of organic compounds. Analytical Chemistry 2006; 78: 7229-7239. doi: 10.1021/ac060427+
  • 37. Merino F, Rubio S, Pérez-Bendito D. Mixed aggregate-based acid-induced cloud-point extraction and ion-trap liquid chromatography–mass spectrometry for the determination of cationic surfactants in sewage sludge. Journal of Chromatography A 2003; 998: 143-154. doi: 10.1016/S0021-9673(03)00565-X
  • 38. Merino F, Rubio S, Pérez-Bendito D. Acid-induced cloud point extraction and preconcentration of polycyclic aromatic hydrocarbons from environmental solid samples. Journal of Chromatography A 2002; 962: 1-8. doi: 10.1016/S0021-9673(02)00503-4
  • 39. García-Prieto A, Lunar ML, Rubio S, Perez-Bendito D. Determination of urinary bisphenol A by coacervative microextraction and liquid chromatography–fluorescence detection. Analytica Chimica Acta 2008; 630: 19-27. doi: 10.1016/j.aca.2008.09.060
  • 40. Perez Bendito MD, Rubio Bravo S, Lunar Reyes ML, Garcia Prieto A. Determination of bisphenol A in canned fatty foods by coacervative microextraction, liquid chromatography and fluorimetry. Food Additives and Contaminants 2009; 26: 265-274. doi: 10.1080/02652030802368740
  • 41. Ballesteros-Gómez A, Sicilia MD Rubio S. Supramolecular solvents in the extraction of organic compounds. A review. Analytica Chimica Acta 2010; 677: 108-130. doi: 10.1016/j.aca.2010.07.027
  • 42. García-Fonseca S, Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. Coacervative extraction of Ochratoxin A in wines prior to liquid chromatography/fluorescence determination. Analytica Chimica Acta 2008; 617: 3-10. doi: 10.1016/j.aca.2007.11.002
  • 43. Evans DF, Wennerström H. The colloidal domain: where physics, chemistry, biology, and technology meet 1999.
  • 44. Ruiz F-J, Rubio S, Pérez-Bendito D. Water-induced coacervation of alkyl carboxylic acid reverse micelles: phenomenon description and potential for the extraction of organic compounds. Analytical Chemistry 2007; 79: 7473-7484. doi: 10.1021/ac0708644
  • 45. Rubio S. Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead. Analytical and Bioanalytical Chemistry 2020; doi: 10.1007/s00216-020-02559-y.
  • 46. Jeffrey GA. An introduction to hydrogen bonding: Oxford university press New York; 1997.
  • 47. Dougherty DA. The cation− π interaction. Accounts of Chemical Research 2013; 46: 885-893. doi: 10.1021/ar300265y
  • 48. Ge Z, Hu J, Huang F, Liu S. Responsive supramolecular gels constructed by crown ether based molecular recognition. Angewandte Chemie 2009; 121: 1830-1834. doi: 10.1002/ange.200805712
  • 49. Deng C, Fang R, Guan Y, Jiang J, Lin C et al. Sonication-induced self-assembly of flexible tris (ureidobenzyl) amine: from dimeric aggregates to supramolecular gels. Chemical Communications 2012; 48: 7973-7975. doi: 10.1039/C2CC33408A
  • 50. Liu J, He P, Yan J, Fang X, Peng J et al. An organometallic super‐gelator with multiple‐stimulus responsive properties. Advanced Materials 2008; 20: 2508-2511. doi: 10.1002/adma.200703195
  • 51. Suzuki M, Yumoto M, Shirai H, Hanabusa K. Supramolecular gels formed by amphiphilic low‐molecular‐weight gelators of Nα, Nε‐Diacyl‐L‐ lysine derivatives. Chemistry–A European Journal 2008; 14: 2133-2144. doi: 10.1002/chem.200701111
  • 52. Yang M, Zhang Z, Yuan F, Wang W, Hess S et al. Self‐assembled structures in organogels of amphiphilic diblock codendrimers. Chemistry–A European Journal 2008; 14: 3330-3337. doi: 10.1002/chem.200701731
  • 53. Strassert CA, Chien CH, Galvez Lopez MD, Kourkoulos D, Hertel D et al. Switching on luminescence by the self‐assembly of a platinum (II) complex into gelating nanofibers and electroluminescent films. Angewandte Chemie International Edition 2011; 50: 946-950. doi: 10.1002/anie.201003818
  • 54. Ogawa Y, Yoshiyama C, Kitaoka T. Helical assembly of azobenzene-conjugated carbohydrate hydrogelators with specific affinity for lectins. Langmuir 2012; 28: 4404-4412. doi: 10.1021/la300098q
  • 55. Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchemical Journal 2020. doi: 10.1016/j.microc.2020.105436
  • 56. Jagirani MS, Soylak M. Microextraction technique based new trends in food analysis. Critical Reviews in Analytical Chemistry 2020: 1-32. doi: 10.1080/10408347.2020.1846491
  • 57. Zhang M, Yuan D, Chen G, Li Q, Zhang Z et al. Simultaneous determination of nitrite and nitrate at nanomolar level in seawater using online solid phase extraction hyphenated with liquid waveguide capillary cell for spectrophotometric detection. Microchimica Acta 2009; 165: 427-435. doi: 10.1007/s00604-009-0158-y
  • 58. Baezzat MR, Parsaeian G, Zare MA. Determination of traces of nitrate in water samples using spectrophotometric method after its preconcentration on microcrystalline naphthalene. Quimica Nova 2011; 34: 607-609. https://www.scielo.br/scielo.php?pid=S0100- 40422011000400010&script=sci_arttext
  • 59. Altunay N, Gürkan R, Olgaç E. Development of a new methodology for indirect determination of nitrite, nitrate, and total nitrite in the selected two groups of foods by spectrophotometry. Food Analytical Methods 2017; 10: 2194-2206. doi: 10.1007/s12161-016-0789-7
  • 60. Pourreza N, Fat’hi MR, Hatami A. Indirect cloud point extraction and spectrophotometric determination of nitrite in water and meat products. Microchemical Journal 2012; 104: 22-25. doi: 10.1016/j.microc.2012.03.026
  • 61. Khoshmaram L, Saadati M, Sadeghi F. Magnetic solid-phase extraction and a portable photocolourimeter using a multi-colour light emitting diode for on-site determination of nitrite. Microchemical Journal 2020; 152: 104344. doi: 10.1016/j.microc.2019.104344
  • 62. Grey L, Nguyen B, Yang P. Liquid chromatography–electrospray ionization isotope dilution mass spectrometry analysis of paraquat and diquat using conventional and multilayer solid-phase extraction cartridges. Journal of Chromatography A 2002; 958: 25-33. doi: 10.1016/ S0021-9673(02)00400-4
  • 63. Whitehead Jr RD, Montesano MA, Jayatilaka NK, Buckley B, Winnik B et al. Method for measurement of the quaternary amine compounds paraquat and diquat in human urine using high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography B 2010; 878: 2548-2553. doi: 10.1016/j.jchromb.2009.09.029
  • 64. Wang K-C, Chen S-M, Hsu J-F, Cheng S-G, Lee C-K. Simultaneous detection and quantitation of highly water-soluble herbicides in serum using ion-pair liquid chromatography–tandem mass spectrometry. Journal of Chromatography B 2008; 876: 211-218. doi: 10.1016/j. jchromb.2008.10.042
  • 65. Bassarab P, Williams D, Dean J, Ludkin E, Perry J. Determination of quaternary ammonium compounds in seawater samples by solidphase extraction and liquid chromatography–mass spectrometry. Journal of Chromatography A 2011; 1218: 673-677. doi: 10.1016/j. chroma.2010.11.088
  • 66. Ozdes D, Duran C. Preparation of melon peel biochar/CoFe2O4 as a new adsorbent for the separation and preconcentration of Cu (II), Cd (II), and Pb (II) ions by solid-phase extraction in water and vegetable samples. Environmental Monitoring and Assessment 2021; 193: 1-19. doi: 10.1007/s10661-021-09389-0
  • 67. Büyükpınar Ç, San N, Komesli OT, Bakırdere S. Determination of nickel in daphne tea extract and lake water samples by flame atomic absorption spectrophotometry with a zirconium-coated T-shaped slotted quartz tube-atom trap and photochemical vapor generation sample introduction. Environmental Monitoring and Assessment 2021; 193: 1-11. doi: 10.1007/s10661-021-09430-2
  • 68. Shishov A, Terno P, Bulatov A. Deep eutectic solvent decomposition-based microextraction for chromium determination in aqueous environments by atomic absorption spectrometry with electrothermal atomization. Analyst 2021; 146: 5081-5088. doi: 10.1039/ D1AN00924A
  • 69. Ay E, Tekin Z, Özdoğan N, Bakırdere S. Zirconium nanoparticles based vortex assisted ligandless dispersive solid phase extraction for trace determination of lead in domestic wastewater using flame atomic absorption spectrophotometry. Bulletin of Environmental Contamination and Toxicology 2021: 1-7. doi: 10.1007/s00128-021-03318-0
  • 70. Gouda AA, El Sheikh R, Khedr AM, Abo Al Ezz S, Gamil W et al. Ultrasound-assisted dispersive microsolid-phase extraction approach for preconcentration of trace cobalt and nickel and sensitive determination in water, food and tobacco samples by flame atomic absorption spectrometry International Journal of Environmental Analytical Chemistry 2021: 1-15. doi: 10.1080/03067319.2021.1928106
  • 71. Jiao Y, Yu J, Yang Y. Vortex-assisted liquid–liquid microextraction combined with spectrophotometry for the determination of trace nitrite in water samples. Water Science and Technology: Water Supply 2017; 17: 1225-1231. doi: 10.2166/ws.2017.010
  • 72. Khani F, Khandaghi J, Farajzadeh MA, Mogaddam MRA. Cold-induced homogenous liquid–liquid extraction performed in a refrigerated centrifuge combined with deep eutectic solvent-based dispersive liquid–liquid microextraction for the extraction of some endocrine disrupting compounds and hydroxymethylfurfural from honey samples food. Analytical Methods 2021: 1-13.
  • 73. Jagirani MS, Uzcan F, Soylak M. A selective and sensitive procedure for magnetic solid-phase microextraction of lead (II) on magnetic cellulose nanoparticles from environmental samples prior to its flame atomic absorption spectrometric detection. Journal of the Iranian Chemical Society 2020: 1-9. doi: 10.1007/s13738-020-02085-9
  • 74. Khan WA, Arain MB, Soylak M. Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food and Chemical Toxicology 2020; 145: 111704. doi: 10.1016/j.fct.2020.111704
  • 75. Asfaram A, Ghaedi M, Goudarzi A, Soylak M. Comparison between dispersive liquid–liquid microextraction and ultrasound-assisted nanoparticles-dispersive solid-phase microextraction combined with microvolume spectrophotometry method for the determination of Auramine-O in water samples. RSC Advances 2015; 5: 39084-39096. doi: 10.1039/C5RA02214B
  • 76. Ozkantar N, Yilmaz E, Soylak M, Tuzen M. Pyrocatechol violet impregnated magnetic graphene oxide for magnetic solid phase microextraction of copper in water, black tea and diet supplements. Food Chemistry 2020: 126737. doi: 10.1016/j.foodchem.2020.126737
  • 77. Yilmaz E, Soylak M. A novel and simple deep eutectic solvent based liquid phase microextraction method for rhodamine B in cosmetic products and water samples prior to its spectrophotometric determination. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018; 202: 81-86. doi: 10.1016/j.saa.2018.04.073
  • 78. Kanberoglu GS, Yilmaz E, Soylak M. Application of deep eutectic solvent in ultrasound-assisted emulsification microextraction of quercetin from some fruits and vegetables. Journal of Molecular Liquids 2019; 279: 571-577. doi: 10.1016/j.molliq.2019.01.130
  • 79. Alothman ZA, Yilmaz E, Habila M, Shabaka A, Soylak M. Ligandless temperature-controlled ionic liquid-phase microextraction of lead (II) ion prior to its determination by FAAS. Microchimica Acta 2013; 180: 669-674. doi: 10.1007/s00604-013-0979-6
  • 80. Duman S, Erbas Z, Soylak M. Ultrasound-assisted magnetic Solid Phase Microextraction of Patent Blue V on magnetic multiwalled carbon nanotubes prior to its spectrophotometric determination. Microchemical Journal 2020; 159: 105468. doi: 10.1016/j.microc.2020.105468
  • 81. Jalbani N, Soylak M. Ligandless surfactant mediated solid phase extraction combined with Fe3O4 nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy. Ecotoxicology and Environmental Safety 2014; 102: 174-178. doi: 10.1016/j.ecoenv.2013.11.018
  • 82. AlMasoud N, Habila MA, Alothman ZA, Alomar TS, Alraqibah N et al. Nano-clay as a solid phase microextractor of copper, cadmium and lead for ultra-trace quantification by ICP-MS. Analytical Methods 2020; 12: 4949-4955. doi: 10.1039/D0AY01343A
  • 83. Soylak M, Unsal YE, Yilmaz E, Tuzen M. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology 2011; 49: 1796-1799. doi: 10.1016/j.fct.2011.04.030
  • 84. Narin I, Soylak M. The uses of 1-(2-pyridylazo) 2-naphtol (PAN) impregnated Ambersorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry. Talanta 2003; 60: 215-221.
  • 85. Li W-K, Xue Y-J, Fu X-Y, Ma Z-Q, Feng J-T. Covalent organic framework reinforced hollow fiber for solid-phase microextraction and determination of pesticides in foods. Food Control 2022; 133: 108587.
  • 86. Demir C, Er EÖ, Kartoğlu B, Atsever N, Yağci Ö et al. Preconcentration of tellurium using magnetic hydrogel-assisted dispersive solid-phase extraction and its determination by slotted quartz tube-flame atomic absorption spectrophotometry. Chemical Papers 2021: 1-7. doi: 10.1007/s11696-021-01645-4
  • 87. Yilmaz E, Soylak M. Latest trends, green aspects, and innovations in liquid-phase--based microextraction techniques: a review. Turkish Journal of Chemistry 2016; 40: 868-893. doi: 10.3906/kim-1605-26
  • 88. Yilmaz E, Soylak M. Switchable solvent-based liquid phase microextraction of copper (II): optimization and application to environmental samples. Journal of Analytical Atomic Spectrometry 2015; 30: 1629-1635. doi: 10.1039/C5JA00012B
  • 89. Biata NR, Nyaba L, Ramontja J, Mketo N, Nomngongo PN. Determination of antimony and tin in beverages using inductively coupled plasma-optical emission spectrometry after ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction. Food Chemistry 2017; 237: 904-911.
  • 90. Reclo M, Yilmaz E, Soylak M, Andruch V, Bazel Y. Ligandless switchable solvent based liquid phase microextraction of nickel from food and cigarette samples prior to its micro-sampling flame atomic absorption spectrometric determination. Journal of Molecular Liquids 2017; 237: 236-241. doi: 10.1016/j.molliq.2017.04.066
  • 91. Khan M, Soylak M. Switchable solvent based liquid phase microextraction of mercury from environmental samples: a green aspect. RSC Advances 2016; 6: 24968-24975. doi: 10.1039/C5RA25384E
  • 92. Topal S, Şaylan M, Zaman BT, Bakırdere S. Determination of trace cadmium in saliva samples using spray assisted droplet formation-liquid phase microextraction prior to the measurement by slotted quartz tube-flame atomic absorption spectrophotometry. Journal of Trace Elements in Medicine and Biology 2021; 68: 126859. doi: 10.1016/j.jtemb.2021.126859
  • 93. Yıldız E, Çabuk H. Determination of the synthetic antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) by matrix acidity-induced switchable hydrophilicity solvent-based homogeneous liquid-liquid microextraction (MAI-SHSHLLME) and high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Analytical Letters 2021: 1-15. doi: 10.1080/00032719.2021.1941072
  • 94. Hayati M, Ramezani M, Rezanejade Bardajee G, Momeni Isfahani T. Application of robust syringe-to-syringe dispersive liquid-phase microextraction method for preconcentration and determination of mercury with the aid of an experimental design. Separation Science and Technology 2021: 1-10. doi: 10.1080/01496395.2021.1899219
  • 95. Anthemidis AN, Ioannou K-I G. Recent developments in homogeneous and dispersive liquid–liquid extraction for inorganic elements determination. A review Talanta 2009; 80: 413-421. doi: 10.1016/j.talanta.2009.09.005
  • 96. Ballesteros-Gómez A, Lunar L, Sicilia MD, Rubio S. Hyphenating supramolecular solvents and liquid chromatography: tips for efficient extraction and reliable determination of organics. Chromatographia 2019; 82: 111-124. doi: 10.1007/s10337-018-3614-1
  • 97. Samaddar P, Sen K. Cloud point extraction: A sustainable method of elemental preconcentration and speciation. Journal of Industrial and Engineering Chemistry 2014; 20: 1209-1219. doi: 10.1016/j.jiec.2013.10.033
  • 98. Pelesko JA. Self assembly: the science of things that put themselves together: CRC Press; 2007.
  • 99. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods. Journal of Chromatography A 2009; 1216: 530-539. doi: 10.1016/j.chroma.2008.06.029
  • 100. de Souza Pinheiro A, de Andrade JB. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water. Talanta 2009; 79: 1354-1359. doi: 10.1016/j.talanta.2009.06.002
  • 101. He L, Luo X, Xie H, Wang C, Jiang X et al. Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Analytica Chimica Acta 2009; 655: 52-59. doi: 10.1016/j.aca.2009.09.044
  • 102. Peng G, He Q, Mmereki D, Zhou G, Pan W et al. Vortex‐assisted liquid–liquid microextraction using a low‐toxicity solvent for the determination of five organophosphorus pesticides in water samples by high‐performance liquid chromatography. Journal of Separation Science 2015; 38: 3487-3493. doi: 10.1002/jssc.201500547
  • 103. Asati A, Satyanarayana G, Patel DK. Comparison of two microextraction methods based on solidification of floating organic droplet for the determination of multiclass analytes in river water samples by liquid chromatography tandem mass spectrometry using Central Composite Design. Journal of Chromatography A 2017; 1513: 157-171. doi: 10.1016/j.chroma.2017.07.048
  • 104. Jeannot MA, Cantwell FF. Solvent microextraction into a single drop. Analytical Chemistry 1996; 68: 2236-2240. doi: 10.1021/ac960042z
  • 105. Liu H, Dasgupta PK. Analytical chemistry in a drop. Solvent extraction in a microdrop. Analytical Chemistry 1996; 68: 1817-1821. doi: 10.1021/ac960145h
  • 106. De Jager L, Andrews A. Solvent microextraction of chlorinated pesticides. Chromatographia 1999; 50: 733-738.
  • 107. He Y, Lee HK. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Analytical Chemistry 1997; 69: 4634-4640. doi: 10.1021/ac970242q
  • 108. Asensio-Ramos M, Ravelo-Pérez LM, González-Curbelo MÁ, Hernández-Borges J. Liquid phase microextraction applications in food analysis. Journal of Chromatography A 2011; 1218: 7415-7437. doi: 10.1016/j.chroma.2011.05.096
  • 109. Spietelun A, Marcinkowski Ł, de la Guardia M, Namieśnik J. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta 2014; 119: 34-45. doi: 10.1016/j.talanta.2013.10.050
  • 110. Hashemi B, Zohrabi P, Kim K-H, Shamsipur M, Deep A, Hong J. Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants TRAC. Trends in Analytical Chemistry 2017; 97: 83-95. doi: 10.1016/j.trac.2017.08.014
  • 111. Rashidipour M, Heydari R, Maleki A, Mohammadi E, Davari B. Salt-assisted liquid–liquid extraction coupled with reversed-phase dispersive liquid–liquid microextraction for sensitive HPLC determination of paraquat in environmental and food samples. Journal of Food Measurement and Characterization 2019; 13: 269-276. doi: 10.1007/s11694-018-9941-y
  • 112. Hamamoto T, Katsuta S. An ionic liquid-based microextraction method for ultra-high preconcentration of paraquat traces in water samples prior to HPLC determination. Analytical Sciences 2018: 18P369. doi: 10.2116/analsci.18P369
  • 113. Salatti-Dorado JA, García-Gómez D, Rodriguez-Ruiz V, Gueguen V, Pavon-Djavid G et al. Multifunctional green supramolecular solvents for cost-effective production of highly stable astaxanthin-rich formulations from Haematococcus pluvialis. Food Chemistry 2019; 279: 294-302. doi: 10.1016/j.foodchem.2018.11.132
  • 114. Scheel GL, Tarley CRT. Feasibility of supramolecular solvent-based microextraction for simultaneous preconcentration of herbicides from natural waters with posterior determination by HPLC-DAD. Microchemical Journal 2017; 133: 650-657. doi: 10.1016/j.microc.2017.03.007
  • 115. Feizi N, Yamini Y, Moradi M, Karimi M, Salamat Q, Amanzadeh H. A new generation of nano-structured supramolecular solvents based on propanol/gemini surfactant for liquid phase microextraction. Analytica Chimica Acta 2017; 953: 1-9. doi: 10.1016/j.aca.2016.11.007
  • 116. Moral A, Sicilia MD, Rubio S. Determination of benzimidazolic fungicides in fruits and vegetables by supramolecular solvent-based microextraction/liquid chromatography/fluorescence detection. Analytica Chimica Acta 2009; 650: 207-213. doi: 10.1016/j.aca.2009.07.056
  • 117. López-Jiménez F, Rosales-Marcano M, Rubio S. Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 2013; 1303: 1-8. doi: 10.1016/j.chroma.2013.06.043
  • 118. Caballo C, Sicilia M, Rubio S. Fast, simple and efficient supramolecular solvent-based microextraction of mecoprop and dichlorprop in soils prior to their enantioselective determination by liquid chromatography–tandem mass spectrometry. Talanta 2014; 119: 46-52. doi: 10.1016/j.talanta.2013.10.043
  • 119. Gissawong N, Boonchiangma S, Mukdasai S, Srijaranai S. Vesicular supramolecular solvent-based microextraction followed by high performance liquid chromatographic analysis of tetracyclines. Talanta 2019; 200: 203-211. doi: 10.1016/j.talanta.2019.03.049
  • 120. Soylak M, Jagirani MS. Extraction techniques used for the removal of pharmaceuticals from environmental samples. Journal of Pharmaceutical and Biomedical Analysis 2021; 27: 450-452. doi: 10.34172/PS.2021.34
  • 121. López-Jiménez FJ, Rubio S, Pérez-Bendito D. Supramolecular solvent-based microextraction of Sudan dyes in chilli-containing foodstuffs prior to their liquid chromatography-photodiode array determination. Food Chemistry 2010; 121: 763-769. doi: 10.1016/j. foodchem.2009.12.081
  • 122. Soylak M, Kiranartligiller E. A simple vortex-assisted dispersive liquid–liquid microextraction system for copper (II) to preconcentration and separation from natural water and table salt samples. Arabian Journal for Science and Engineering 2017; 42: 175-181. doi: 10.1007/ s13369-016-2208-1
  • 123. Memon ZM, Yilmaz E, Soylak M. Switchable solvent based green liquid phase microextraction method for cobalt in tobacco and food samples prior to flame atomic absorption spectrometric determination. Journal of Molecular Liquids 2017; 229: 459-464. doi: 10.1016/j. molliq.2016.12.098
  • 124. Alothman ZA, Habila MA, Yilmaz E, Al-Harbi NM, Soylak M. Supramolecular microextraction of cobalt from water samples before its microsampling flame atomic absorption spectrometric detection. International Journal of Environmental Analytical Chemistry 2015; 95: 1311-1320. doi: 10.1080/03067319.2015.1090568
  • 125. Soylak M, Yilmaz E. Determination of cadmium in fruit and vegetables by ionic liquid magnetic microextraction and flame atomic absorption spectrometry. Analytical Letters 2015; 48: 464-476. doi: 10.1080/00032719.2014.949732
  • 126. Shah F, Yilmaz E, Kazi TG, Afridi HI, Soylak M. Vortex-assisted liquid–liquid microextraction coupled to flame atomic absorption spectrometry for lead determination: ionic liquid based microextraction using Triton X-100 as dispersant. Analytical Methods 2012; 4: 4091-4095. doi: 10.1039/C2AY25773D
  • 127. Rezaei F, Yamini Y, Moradi M, Daraei B. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Analytica Chimica Acta 2013; 804: 135-142. doi: 10.1016/j.aca.2013.10.026
  • 128. Alothman Z, Yilmaz E, Habila M, Ghfar A, Alhenaki B et al. Supramolecular solvent microextraction and ultra-performance liquid chromatography-tandem mass spectrometry combination for the preconcentration and determination of malathion in environmental samples. Desalination and Water Treatment 2019; 144: 166-171. doi: 10.5004/dwt.2019.23574
  • 129. Uzcan F, Erbas Z, Soylak M. Supramolecular solvent-based liquid phase microextraction of malachite green at trace level from water samples for its UV–vis spectrophotometric detection. International Journal of Environmental Analytical Chemistry 2019; 99: 595-605. doi: 10.1080/03067319.2019.1604952
  • 130. Zohrabi P, Shamsipur M, Hashemi M, Hashemi B. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid. Talanta 2016; 160: 340-346. doi: 10.1016/j.talanta.2016.07.036
  • 131. Yilmaz E, Soylak M. Supramolecular solvent microextraction of gold prior to its determination by microsample injection system coupled with flame atomic absorption spectrometry. RSC Advances 2014; 4: 47396-47401. doi: 10.1039/C4RA08209E
  • 132. Li Z, Chen J, Liu M, Yang Y. Supramolecular solvent-based microextraction of copper and lead in water samples prior to reacting with synthesized Schiff base by flame atomic absorption spectrometry determination. Analytical Methods 2014; 6: 2294-2298. doi: 10.1039/ C3AY00065F
  • 133. Zhao L, Zhong S, Fang K, Qian Z, Chen J. Determination of cadmium (II), cobalt (II), nickel (II), lead (II), zinc (II), and copper (II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. Journal of Hazardous Materials 2012; 239: 206-212. doi: 10.1016/j.jhazmat.2012.08.066
  • 134. López-Jiménez FJ, Ballesteros-Gómez A, Rubio S. Determination of polycyclic aromatic hydrocarbons (PAH4) in food by vesicular supramolecular solvent-based microextraction and LC–fluorescence detection. Food Chemistry 2014; 143: 341-347. doi: 10.1016/j. foodchem.2013.07.136
  • 135. Caballo C, Sicilia MD, Rubio S. Supramolecular solvents for green chemistry. The application of green solvents in separation processes: Elsevier; 2017, p. 111-137.
  • 136. Moradi M, Yamini Y. Application of vesicular coacervate phase for microextraction based on solidification of floating drop. Journal of Chromatography A 2012; 1229: 30-37. doi: 10.1016/j.chroma.2012.01.028
  • 137. Ballesteros-Gómez A, Rubio S. Environment-responsive alkanol-based supramolecular solvents: characterization and potential as restricted access property and mixed-mode extractants. Analytical Chemistry 2012; 84: 342-349. doi: 10.1021/ac2026207
  • 138. ALOthman ZA, Yilmaz E, Habila MA, Alhenaki B, Soylak M et al. Development of combined-supramolecular microextraction with ultra-performance liquid chromatography-tandem mass spectrometry procedures for ultra-trace analysis of carbaryl in water, fruits and vegetables. International Journal of Environmental Analytical Chemistry 2020: 1-11. doi: 10.1080/03067319.2020.1738419
  • 139. Deng H, Wang H, Liang M, Su X. A novel approach based on supramolecular solvent microextraction and UPLC-Q-Orbitrap HRMS for simultaneous analysis of perfluorinated compounds and fluorine-containing pesticides in drinking and environmental water. Microchemical Journal 2019; 151: 104250. doi: 10.1016/j.microc.2019.104250
  • 140. Peyrovi M, Hadjmohammadi M. Alkanol-based supramolecular solvent microextraction of organophosphorus pesticides and their determination using high-performance liquid chromatography. Journal of the Iranian Chemical Society 2017; 14: 995-1004. doi: DOI 10.1007/s13738-017-1049-5
  • 141. Scheel GL, Tarley CRT. Simultaneous microextraction of carbendazim, fipronil and picoxystrobin in naturally and artificial occurring water bodies by water-induced supramolecular solvent and determination by HPLC-DAD. Journal of Molecular Liquids 2020; 297: 111897. doi: 10.1016/j.molliq.2019.111897
  • 142. Musarurwa, H, Tavengwa, N T. Supramolecular solvent-based micro-extraction of pesticides in food and environmental samples. Talanta 2020: 121515. doi: 10.1016/j.talanta.2020.121515
  • 143. Gorji S, Biparva P, Bahram M, Nematzadeh G. Rapid and direct microextraction of pesticide residues from rice and vegetable samples by supramolecular solvent in combination with chemometrical data processing. Food Analytical Methods 2019; 12: 394-408. doi: 10.1007/ s12161-018-1371-2
  • 144. Safari M, Yamini Y, Tahmasebi E, Ebrahimpour B. Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection. Microchimica Acta 2016; 183: 203-210. doi: 10.1007/s00604-015-1607-4
  • 145. Amir S, Shah J, Jan MR. Supramolecular solvent microextraction of phenylurea herbicides from environmental samples. Desalination and Water Treatment 2019; 148: 202-212. doi: doi:10.5004/dwt.2019.23789
  • 146. Seebunrueng K, Phosiri P, Apitanagotinon R, Srijaranai S. A new environment-friendly supramolecular solvent-based liquid phase microextraction coupled to high performance liquid chromatography for simultaneous determination of six phenoxy acid herbicides in water and rice samples. Microchemical Journal 2020; 152: 104418. doi: 10.1016/j.microc.2019.104418
  • 147. Adlnasab L, Ezoddin M, Shabanian M, Mahjoob B. Development of ferrofluid mediated CLDH@ Fe3O4@ Tanic acid-based supramolecular solvent: Application in air-assisted dispersive micro solid phase extraction for preconcentration of diazinon and metalaxyl from various fruit juice samples. Microchemical Journal 2019; 146: 1-11. doi: 10.1016/j.microc.2018.12.020
  • 148. Asiabi H, Yamini Y, Moradi M. Determination of sulfonylurea herbicides in soil samples via supercritical fluid extraction followed by nanostructured supramolecular solvent microextraction. The Journal of Supercritical Fluids 2013; 84: 20-28. doi: 10.1039/C5RA02214B
  • 149. Najafi A, Hashemi M. Feasibility of liquid phase microextraction based on a new supramolecular solvent for spectrophotometric determination of orthophosphate using response surface methodology optimization. Journal of Molecular Liquids 2020; 297: 111768. doi: 10.1016/j.molliq.2019.111768
  • 150. Zhao W, Zhao J, Zhao H, Cao Y, Liu W. Supramolecular solvent‐based vortex‐mixed microextraction: Determination of chiral triazole fungicide in beer samples. Chirality 2018; 30: 302-309. doi: 10.1002/chir.22798
  • 151. Panhwar AH, Kazi TG, Afridi HI, Arain SA, Arain MS et al. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: related health risk. Environmental Geochemistry and Health 2016; 38: 265-274.
  • 152. Soylak M, Doan M. Column preconcentration of trace amounts of copper on activated carbon from natural water samples. Analytical Letters 1996; 29: 635-643.
  • 153. Soylak M. Determination of trace amounts of copper in metallic aluminium samples after separation and preconcentration on an activated carbon column. Fresenius Environmental Bulletin 1998; 7: 383-387.
  • 154. Ghaedi M, Niknam K, Kokhdan SN, Soylak M. Combination of flotation and flame atomic absorption spectrometry for determination, preconcentration and separation of trace amounts of metal ions in biological samples. Human & Experimental Toxicology 2013; 32: 504- 512.
  • 155. Ayhan NK, Yaman M. Evaluation of iron and zinc contents of some fish species. Biological Trace Element Research 2021: 1-7. doi: 10.1007/ s12011-021-02745-8
  • 156. Abolhasani J, Behbahani M. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples. Environmental Monitoring and Assessment 2015; 187: 1-12.
  • 157. El-Yazeed WA, Abou El-Reash Y, Elatwy L, Ahmed AI. Novel bimetallic Ag-Fe MOF for exceptional Cd and Cu removal and 3, 4-dihydropyrimidinone synthesis. Journal of the Taiwan Institute of Chemical Engineers 2020; 114: 199-210.
  • 158. Sobhi HR, Ghambarian M, Esrafili A, Behbahani M. A nanomagnetic and 3-mercaptopropyl-functionalized silica powder for dispersive solid phase extraction of Hg (II) prior to its determination by continuous-flow cold vapor AAS. Microchimica Acta 2017; 184: 2317-2323.
  • 159. Jalbani N, Soylak M. Preconcentration/separation of lead at trace level from water samples by mixed micelle cloud point extraction. Journal of Industrial and Engineering chemistry 2015; 29: 48-51.
  • 160. Soylak M, Elçi L, Dogan M. Flame atomic absorption spectrometric determination of cadmium, cobalt, copper, lead and nickel in chemical grade potassium salts after an enrichment and separation procedure. Journal of Trace and Microprobe Techniques 1999; 17: 149-156.
  • 161. Saracoglu S, Soylak M, Elci L. Determination of trace amounts of copper in natural water samples by flame atomic absorption spectrometry coupled with flow injection on-line solid phase extraction on Ambersorb 563 adsorption resin. Chemia Analityczna 2003; 48: 77-86.
  • 162. Ghaedi M, Karimipour G, Alambarkat E, Asfaram A, Montazerozohori M et al. Solid-phase extraction of Pb2+ ion from environmental samples onto L-AC-Ag-NP by flame atomic absorption spectrometry (FAAS). International Journal of Environmental Analytical Chemistry 2015; 95: 1030-1041.
  • 163. Tirpák F, Halo M, Tokárová K, Binkowski LJ, Vašíček J et al. Composition of stallion seminal plasma and its impact on oxidative stress markers and spermatozoa quality. Life 2021; 11: 1238. doi: 10.3390/life11111238
  • 164. Sayar O, Torbati NA, Saravani H, Mehrani K, Behbahani A et al. A novel magnetic ion imprinted polymer for selective adsorption of trace amounts of lead (II) ions in environment samples. Journal of Industrial and Engineering chemistry 2014; 20: 2657-2662.
  • 165. Yilmaz E, Alosmanov R, Soylak M. Magnetic solid phase extraction of lead (II) and cadmium (II) on a magnetic phosphorus-containing polymer (M-PhCP) for their microsampling flame atomic absorption spectrometric determinations. RSC Advances 2015; 5: 33801-33808
  • 166. Fouladian HR, Behbahani M. Solid phase extraction of Pb (II) and Cd (II) in food, soil, and water samples based on 1-(2-pyridylazo)- 2-naphthol-functionalized organic–inorganic mesoporous material with the aid of experimental design methodology. Food Analytical Methods 2015; 8: 982-993.
  • 167. Khan M, Soylak M. Supramolecular solvent based liquid–liquid microextraction of aluminum from water and hair samples prior to UVvisible spectrophotometric detection. RSC Advances 2015; 5: 62433-62438. doi: 10.1039/C5RA10046A
  • 168. Aydin F, Yilmaz E, Soylak M. Supramolecular solvent-based microextraction method for cobalt traces in food samples with optimization Plackett–Burman and central composite experimental design. RSC Advances 2015; 5: 94879-94886. doi: 10.1039/C5RA15856G
  • 169. Aydin F, Yilmaz E, Soylak M. Supramolecular solvent-based dispersive liquid–liquid microextraction of copper from water and hair samples. RSC Advances 2015; 5: 40422-40428.
  • 170. Rastegar A, Alahabadi A, Esrafili A, Rezai Z, Hosseini-Bandegharaei A et al. Application of supramolecular solvent-based dispersive liquid–liquid microextraction for trace monitoring of lead in food samples. Analytical Methods 2016; 8: 5533-5539. doi: 10.1007/s11694- 018-9941-y
  • 171. Kashanaki R, Ebrahimzadeh H, Moradi M. Metal–organic framework based micro solid phase extraction coupled with supramolecular solvent microextraction to determine copper in water and food samples. New Journal of Chemistry 2018; 42: 5806-5813. doi: 10.1039/ C8NJ00340H
  • 172. Hafez EM, El Sheikh R, Fathallah M, Sayqal AA, Gouda AA. An environment-friendly supramolecular solvent-based liquid–phase microextraction method for determination of aluminum in water and acid digested food samples prior to spectrophotometry. Microchemical Journal 2019; 150: 104100. doi: 10.1016/j.microc.2019.104100
  • 173. Suquila FAC, Scheel GL, de Oliveira FM, Tarley CRT. Assessment of ultrasound-assisted extraction combined with supramolecular solventbased microextraction for highly sensitive cadmium determination in medicinal plant sample by TS-FF-AAS. Microchemical Journal 2019; 145: 1071-1077. doi: 10.1016/j.microc.2018.12.011
  • 174. Ozkantar N, Soylak M, Tuzen M. Determination of copper using supramolecular solvent-based microextraction for food, spices, and water samples prior to analysis by flame atomic absorption spectrometry. Atomic Spectroscopy 2019; 40: 17.
  • 175. Yilmaz E, Soylak M. Development a novel supramolecular solvent microextraction procedure for copper in environmental samples and its determination by microsampling flame atomic absorption spectrometry. Talanta 2014; 126: 191-195. doi: 10.1016/j.talanta.2014.03.053
  • 176. Gouda AA, AlShehri AM, El Sheikh R, Hassan WS, Ibrahim SH. Development of green vortex-assisted supramolecular solvent-based liquid–liquid microextraction for preconcentration of mercury in environmental and biological samples prior to spectrophotometric determination. Microchemical Journal 2020: 105108. doi: 10.1016/j.microc.2020.105108.
  • 177. Gouda AA, Elmasry MS, Hashem H, El-Sayed HM. Eco-friendly environmental trace analysis of thorium using a new supramolecular solvent-based liquid-liquid microextraction combined with spectrophotometry. Microchemical Journal 2018; 142: 102-107. doi: 10.1016/j. microc.2018.06.024
  • 178. Ali J, Tuzen M, Kazi TG. Evaluation of mercury in environmental samples by a supramolecular solvent–based dispersive liquid–liquid microextraction method before analysis by a cold vapor generation technique. Journal of AOAC International 2017; 100: 782-788. doi: 10.5740/jaoacint.16-0252
  • 179. Salamat Q, Yamini Y, Moradi M, Safari M, Feizi N. Extraction and separation of zirconium from hafnium by using nano-structured supramolecular solvent microextraction method. Journal of the Iranian Chemical Society 2018; 15: 293-301. doi: 10.1039/C8NJ03943G
  • 180. Liang P, Yang E, Yu J, Wen L. Supramolecular solvent dispersive liquid–liquid microextraction based on solidification of floating drop and graphite furnace atomic absorption spectrometry for the determination of trace lead in food and water samples. Analytical Methods 2014; 6: 3729-3734. doi: 10.1039/C4AY00019F
  • 181. Khan M, Yilmaz E, Soylak M. Supramolecular solvent microextraction of uranium at trace levels from water and soil samples. Turkish Journal of Chemistry 2017; 41: 61-69. doi: doi:10.3906/kim-1905-52
  • 182. ALOthman Z, Habila M, Yilmaz E, Soylak M, Alfadul S. Supramolecular solvent-based microextraction of copper at trace levels before determination by microsampling flame atomic absorption spectrometry. Atomic Spectroscopy 2016; 37: 158.
  • 183. Seidi S, Alavi L, Jabbari A. Trace determination of cadmium in rice samples using solidified floating organic drop microextraction based on vesicular supramolecular solvent followed by flow-injection analysis–flame atomic absorption spectrometry. Journal of the Iranian Chemical Society 2018; 15: 2083-2092. doi: 10.1007/s13738-018-1401-4
  • 184. Altunay N, Katin KP. Ultrasonic-assisted supramolecular solvent liquid-liquid microextraction for determination of manganese and zinc at trace levels in vegetables: Experimental and theoretical studies. Journal of Molecular Liquids 2020: 113192. doi: 10.1016/j. molliq.2020.113192
  • 185. Ozkantar N, Soylak M, Tuzen M. Ultrasonic-assisted supramolecular solvent liquid-liquid microextraction for inorganic chromium speciation in water samples and determination by uv-vis spectrophotometry. Atomic Spectroscopy 2020; 41: 43-50.
  • 186. Aydin F, Yilmaz E, Soylak M. Ultrasonic-assisted supramolecular solvent-based liquid phase microextraction of mercury as 1-(2-pyridylazo)- 2-naphthol complexes from water samples. International Journal of Environmental Analytical Chemistry 2016; 96: 1356-1366. doi: 10.1080/03067319.2016.1253690
  • 187. Ezoddin M, Majidi B, Abdi K. Ultrasound-assisted supramolecular dispersive liquid–liquid microextraction based on solidification of floating organic drops for preconcentration of palladium in water and road dust samples. Journal of Molecular Liquids 2015; 209: 515-519. doi: 10.1016/j.molliq.2015.06.031
  • 188. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. Determination of priority carcinogenic polycyclic aromatic hydrocarbons in wastewater and surface water by coacervative extraction and liquid chromatography–fluorimetry. Journal of Chromatography A 2008; 1203: 168-176.
  • 189. Tech IJPS. Microencapsulation Techniques and its Practice.
  • 190. Carabias-Martınez R, Rodrıguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón J, Garcıa-Pinto C et al. Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. Journal of Chromatography A 2000; 902: 251-265.
  • 191. Rubio S, Pérez-Bendito D. Supramolecular assemblies for extracting organic compounds. TRAC Trends in Analytical Chemistry 2003; 22: 470-485.
  • 192. Dueñas-Mas MJ, Ballesteros-Gómez A, Rubio S. Supramolecular solvent-based microextraction of emerging bisphenol A replacements (colour developers) in indoor dust from public environments. Chemosphere 2019; 222: 22-28.
  • 193. Altunay N, Elik A. A green and efficient vortex-assisted liquid-phase microextraction based on supramolecular solvent for UV–VIS determination of nitrite in processed meat and chicken products. Food Chemistry 2020; 332: 127395. doi: 10.1016/j.foodchem.2020.127395
  • 194. Hem S, Gissawong N, Srijaranai S, Boonchiangma S. Supramolecular solvent-based liquid phase microextraction combined with ionpairing reversed-phase hplc for the determination of quats in vegetable samples. Toxics 2019; 7: 60. doi: 10.3390/toxics7040060
  • 195. García-Fonseca S, Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination. Journal of Chromatography A 2010; 1217: 2376-2382. doi: 10.1016/j. chroma.2009.10.085
  • 196. Bajkacz S, Adamczewska P, Kokoszka K, Kycia-Słocka E, Sochacki A et al. Supramolecular solvent-based microextraction of selected anticonvulsant and nonsteroidal anti-inflammatory drugs from sediment samples. Molecules 2020; 25: 5671. doi: 10.3390/ molecules25235671
  • 197. Soylak M, Celik M, Uzcan F. Supramolecular solvent-based microextraction of Sudan Orange G at trace levels for its separation, preconcentration and spectrophotometric determination. International Journal of Environmental Analytical Chemistry 2020; 100: 935-
  • 944. doi: 10.1080/03067319.2019.1645842
  • 198. Soylak M, Agirbas M, Yilmaz E. A new strategy for the combination of supramolecular liquid phase microextraction and UV–Vis spectrophotometric determination for traces of maneb in food and water samples. Food Chemistry 2020; 338: 128068. doi: 10.1016/j. foodchem.2020.128068
  • 199. Ferdowsi M, Taghian A, Najafi A, Moradi M. Application of a nanostructured supramolecular solvent for the microextraction of diphenylamine and its mono‐nitrated derivatives from unburned single‐base propellants. Journal of Separation Science 2015; 38: 276- 282. doi: 10.1002/jssc.201401023
  • 200. Shamsipur M, Zohrabi P, Hashemi M. Application of a supramolecular solvent as the carrier for ferrofluid based liquid-phase microextraction for spectrofluorimetric determination of levofloxacin in biological samples. Analytical Methods 2015; 7: 9609-9614. doi: 10.1039/C5AY02330K
  • 201. Yang Q, Su W, Jiang X, Chen X. Application of vortex-assisted supramolecular solvent liquid–liquid microextraction for trace determination of nitroaniline isomers. International Journal of Environmental Analytical Chemistry 2014; 94: 812-821. doi: 10.1080/03067319.2014.900676
  • 202. Arghavani-Beydokhti S, Rajabi M, Asghari A. Combination of magnetic dispersive micro solid-phase extraction and supramolecular solvent-based microextraction followed by high-performance liquid chromatography for determination of trace amounts of cholesterollowering drugs in complicated matrices. Analytical and Bioanalytical Chemistry 2017; 409: 4395-4407. doi: 10.1007/s00216-017-0383-x
  • 203. Costi EM, Sicilia MD, Rubio S. Multiresidue analysis of sulfonamides in meat by supramolecular solvent microextraction, liquid chromatography and fluorescence detection and method validation according to the 2002/657/EC decision. Journal of Chromatography A 2010; 1217: 6250-6257. doi: 10.1016/j.chroma.2010.08.017
  • 204. Lian X, Wang N, Ma L, Jiang H, Bai D et al. Determination of aucubin by supramolecular solvent-based dispersive liquid-liquid microextraction and UPLC-MS/MS: Application to a pharmacokinetic study in rats with type 1 diabetes. Journal of Pharmaceutical and Biomedical Analysis 2020: 113301. doi: 10.1016/j.jpba.2020.113301
  • 205. Wang J, Liu L, Shi L, Yi T, Wen Y et al. Determination of benzo [a] pyrene in edible oils using phase‐transfer‐catalyst‐assisted saponification and supramolecular solvent microextraction coupled to HPLC with fluorescence detection. Journal of Separation Science 2017; 40: 480- 487. doi: 10.1002/jssc.201600864
  • 206. Li Y, Jiao Y, Guo Y, Yang Y. Determination of bisphenol-A, 2, 4-dichlorophenol, bisphenol-AF and tetrabromobisphenol-A in liquid foods and their packaging materials by vortex-assisted supramolecular solvent microextraction/high-performance liquid chromatography. Analytical Methods 2013; 5: 5037-5043. doi: 10.1039/C3AY40586A
  • 207. Rezaei F, Yamini Y, Asiabi H, Moradi M. Determination of diphenylamine residue in fruit samples by supercritical fluid extraction followed by vesicular based-supramolecular solvent microextraction. The Journal of Supercritical Fluids 2015; 100: 79-85. doi: 10.1016/j. supflu.2015.02.021
  • 208. Caballo C, Costi EM, Sicilia MD, Rubio S. Determination of supplemental feeding needs for astaxanthin and canthaxanthin in salmonids by supramolecular solvent-based microextraction and liquid chromatography–UV/VIS spectroscopy. Food Chemistry 2012; 134: 1244- 1249. doi: 10.1016/j.foodchem.2012.03.051
  • 209. Tafti EN, Dadfarnia S, Shabani AMH, Firouzabadi ZD. Determination of vanadium species in water, vegetables, and fruit samples using supramolecular solvent microextraction combined with electrothermal atomic absorption spectrometry. Journal of the Iranian Chemical Society 2018; 15: 1899-1906. doi: 10.1007/s13738-018-1387-y
  • 210. Moradi M, Yamini Y, Rezaei F, Tahmasebi E, Esrafili A. Development of a new and environment friendly hollow fiber-supported liquid phase microextraction using vesicular aggregate-based supramolecular solvent. Analyst 2012; 137: 3549-3557. doi: 10.1039/C2AN35304K
  • 211. Menghwar P, Yilmaz E, Soylak M. Development of an ultrasonic-assisted restricted access supramolecular solvent-based liquid phase microextraction (UA-RAS-LPME) method for separation-preconcentration and UV-VIS spectrophotometric detection of curcumin. Separation Science and Technology 2018; 53: 2612-2621. doi: 10.1080/01496395.2018.1462389
  • 212. Seebunrueng K, Dejchaiwatana C, Santaladchaiyakit Y, Srijaranai S. Development of supramolecular solvent based microextraction prior to high performance liquid chromatography for simultaneous determination of phenols in environmental water. RSC Advances 2017; 7: 50143-50149. doi: 10.1039/C7RA07780G
  • 213. Salamat Q, Yamini Y, Moradi M, Farahani A, Feizi N. Extraction of antidepressant drugs in biological samples using alkanol‐based nano structured supramolecular solvent microextraction followed by gas chromatography with mass spectrometric analysis. Journal of Separation Science 2019; 42: 1620-1628
  • 214. Peyrovi M, Hadjmohammadi M. Extraction optimization of Loratadine by supramolecular solvent-based microextraction and its determination using HPLC. Journal of Chromatography B 2015; 980: 41-47. doi: 10.1016/j.jchromb.2014.12.008.
  • 215. Caballo C, Sicilia M, Rubio S. Stereoselective quantitation of mecoprop and dichlorprop in natural waters by supramolecular solventbased microextraction, chiral liquid chromatography and tandem mass spectrometry. Analytica Chimica Acta 2013; 761: 102-108. doi: 10.1016/j.aca.2012.11.044
  • 216. Zong Y, Chen J, Hou J, Deng W, Liao X et al. Hexafluoroisopropanol-alkyl carboxylic acid high-density supramolecular solvent based dispersive liquid-liquid microextraction of steroid sex hormones in human urine. Journal of Chromatography A 2018; 1580: 12-21. doi: 10.1016/j.chroma.2018.10.041
  • 217. Yang Q, Chen X, Jiang X. Liquid–liquid microextraction of nitrophenols using supramolecular solvent and their determination by HPLC with UV detection. Chromatographia 2013; 76: 1641-1647. doi: 10.1007/s10337-013-2554-z
  • 218. Shokrollahi A, Pili HB. Supramolecular based-ligandless ultrasonic assisted-dispersion solidification liquid–liquid microextraction of uranyl ion prior to spectrophotometric determination with dibenzoylmethane. RSC Advances 2016; 6: 2394-2401. doi: 10.1039/C5RA23355K
  • 219. Yıldız E, Çabuk H. Miniaturized matrix solid‐phase dispersion coupled with supramolecular solvent‐based microextraction for the determination of paraben preservatives in cream samples. Journal of Separation Science 2018; 41: 2750-2758. doi: 10.1002/jssc.201800235
  • 220. Ezoddin M, Abdi K. Monitoring of antifungal drugs in biological samples using ultrasonic-assisted supramolecular dispersive liquid–liquid microextraction based on solidification of a floating organic droplet. Journal of Chromatography B 2016; 1027: 74-80. doi: 10.1016/j. jchromb.2016.05.025
  • 221. Memon ZM, Yilmaz E, Soylak M. Multivariate statistical design optimization for ultrasonic-assisted restricted access supramolecular solvent-based liquid phase microextraction of quercetin in food samples. Journal of the Iranian Chemical Society 2017; 14: 2521-2528. doi: 10.1007/s13738-017-1187-9
  • 222. Feizi N, Yamini Y, Moradi M, Ebrahimpour B. Nano‐structured gemini‐based supramolecular solvent for the microextraction of cyhalothrin and fenvalerate. Journal of Separation Science 2016; 39: 3400-3409. doi: 10.1002/jssc.201600263
  • 223. Ebrahimpour B, Yamini Y, Seidi S, Rezaei F. Nanostructured solvent based microextraction followed by a novel strategy for online phase separation coupled with HPLC for determination of ethinyl estradiol. Analytical Methods 2014; 6: 2936-2942. doi: 10.1039/C3AY42155D
  • 224. Salamat Q, Yamini Y, Moradi M, Karimi M, Nazraz M. Novel generation of nano-structured supramolecular solvents based on an ionic liquid as a green solvent for microextraction of some synthetic food dyes. New Journal of Chemistry 2018; 42: 19252-19259. doi: 10.1039/ C8NJ03943G
  • 225. Moradi M, Kashanaki R, Borhani S, Bigdeli H, Abbasi N et al. Optimization of supramolecular solvent microextraction prior to graphite furnace atomic absorption spectrometry for total selenium determination in food and environmental samples. Journal of Molecular Liquids 2017; 232: 243-250. doi: 10.1016/j.molliq.2017.02.082
  • 226. Magiera S, Nieścior A, Baranowska I. Quick supramolecular solvent-based microextraction combined with ultra-high performance liquid chromatography for the analysis of isoflavones in soy foods. Food Analytical Methods 2016; 9: 1770-1780. doi: 10.1007/s12161-015-0365-6
  • 227. Caballero-Casero, N, Ocak, M, Ocak, Ü, Rubio, S. Quick supramolecular solvent-based microextraction for quantification of low curcuminoid content in food. Analytical and Bioanalytical Chemistry 2014; 406: 2179-2187. doi: 10.1007/s00216-013-7409-9
  • 228. Li X, Huang A, Liao X, Chen J, Xiao Y. Restricted access supramolecular solvent based magnetic solvent bar liquid-phase microextraction for determination of non-steroidal anti-inflammatory drugs in human serum coupled with high performance liquid chromatographytandem mass spectrometry. Journal of Chromatography A 2020; 1634: 461700. doi: 10.1016/j.chroma.2020.461700
  • 229. Özkantar N, Soylak M, Tüzen M. Spectrophotometric detection of rhodamine B in tap water, lipstick, rouge, and nail polish samples after supramolecular solvent microextraction. Turkish Journal of Chemistry 2017; 41: 987-994. doi: 10.3906/kim-1702-72
  • 230. Rezaei F, Yamini Y, Asiabi H, Seidi S, Rezazadeh M. Supercritical fluid extraction followed by nanostructured supramolecular solvent extraction for extraction of levonorgestrel and megestrol from whole blood samples. The Journal of Supercritical Fluids 2016; 107: 392- 399. doi: 10.1016/j.supflu.2015.10.005
  • 231. Falsafi Z, Raofie F, Ariya PA. Supercritical fluid extraction followed by supramolecular solvent microextraction as a fast and efficient preconcentration method for determination of polycyclic aromatic hydrocarbons in apple peels. Journal of Separation Science 2020; 43: 1154-1163. doi: 10.1016/j.molliq.2015.06.031
  • 232. ALOthman ZA, Yilmaz E, Habila M, Ghfar AA, Alhenaki B et al. Supramolecular solvent microextraction and ultra-performance liquid chromatography-tandem mass spectrometry combination for the preconcentration and determination of malathion in environmental samples. Desalin Water Treat 2019; 144: 166-171. doi: 10.5004/dwt.2019.23574
  • 233. Yigit S, Tuzen M, Soylak M, Dogan M. Supramolecular solvent microextraction of Sudan blue II in environmental samples prior to its spectrophotometric determination. International Journal of Environmental Analytical Chemistry 2016; 96: 568-575. doi: 10.1080/03067319.2016.1172221
  • 234. Peyrovi M, Hadjmohammadi M. Supramolecular solvent-based microextraction of warfarin from biological samples and its determination using HPLC. Journal of the Iranian Chemical Society 2015; 12: 1253-1259. doi: 10.1007/s13738-015-0589-9
  • 235. Qin H, Qiu X, Zhao J, Liu M, Yang Y. Supramolecular solvent-based vortex-mixed microextraction: determination of glucocorticoids in water samples. Journal of Chromatography A 2013; 1311: 11-20. doi: 10.1016/j.chroma.2013.08.049
  • 236. Bogdanova P, Pochivalov A, Vakh C, Bulatov A. Supramolecular solvents formation in aqueous solutions containing primary amine and monoterpenoid compound: Liquid phase microextraction of sulfonamides. Talanta 2020: 120992. doi: 10.1016/j.talanta.2020.120992
  • 237. Jafarvand S, Shemirani F. Supramolecular–based dispersive liquid–liquid microextraction: A novel sample preparation technique for determination of inorganic species. Microchimica Acta 2011; 173: 353-359. doi: 10.1007/s00604-011-0564-9
  • 238. Jafarvand S, Shemirani F. Supramolecular‐based dispersive liquid–liquid microextraction: A novel sample preparation technique utilizes coacervates and reverse micelles. Journal of Separation Science 2011; 34: 455-461. doi: 10.1002/jssc.201000630
  • 239. Faraji M, Noormohammadi F, Jafarinejad S, Moradi M. Supramolecular-based solvent microextraction of carbaryl in water samples followed by high performance liquid chromatography determination. International Journal of Environmental Analytical Chemistry 2017; 97: 730-742. doi: 10.1080/03067319.2017.1353088
  • 240. Ezoddin M, Adlnasab L, Karimi MA. Ultrasonically formation of supramolecular based ultrasound energy assisted solidification of floating organic drop microextraction for preconcentration of methadone in human plasma and saliva samples prior to gas chromatography–mass spectrometry. Ultrasonics Sonochemistry 2019; 50: 182-187. doi: 10.1016/j.ultsonch.2018.09.019
  • 241. Moradi M, Yamini Y, Tayyebi M, Asiabi H. Ultrasound-assisted liquid-phase microextraction based on a nanostructured supramolecular solvent. Analytical and Bioanalytical Chemistry 2013; 405: 4235-4243. doi: 10.1007/s00216-013-6810-8
  • 242. Kashanaki R, Ebrahimzadeh H, Moradi M. Ultrasound-assisted supramolecular solvent microextraction coupled with graphite furnace atomic absorption spectrometry for speciation analysis of inorganic arsenic. Analytical Methods 2017; 9: 3121-3127. doi: 10.1039/ C7AY00738H
  • 243. Karimiyan H, Hadjmohammadi M. Ultrasound‐assisted supramolecular‐solvent‐based microextraction combined with high‐performance liquid chromatography for the analysis of chlorophenols in environmental water samples. Journal of Separation Science 2016; 39: 4740- 4747. doi: 10.1002/jssc.201600941
  • 244. Mpupa A, Mashile GP, Nomngongo PN. Vortex assisted-supramolecular solvent based microextraction coupled with spectrophotometric determination of triclosan in environmental water samples. Open Chemistry 2017; 15: 255-262. doi: 10.1515/chem-2017-0032
  • 245. Najafi A, Hashemi M. Vortex-assisted supramolecular solvent microextraction based on solidification of floating drop for preconcentration and speciation of inorganic arsenic species in water samples by molybdenum blue method. Microchemical Journal 2019; 150: 104102. doi: 10.1016/j.microc.2019.104102
APA JAGIRANI M, Soylak M (2021). Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. , 1651 - 1677. 10.3906/kim-2110-15
Chicago JAGIRANI Muhammad Saqaf,Soylak Mustafa Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. (2021): 1651 - 1677. 10.3906/kim-2110-15
MLA JAGIRANI Muhammad Saqaf,Soylak Mustafa Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. , 2021, ss.1651 - 1677. 10.3906/kim-2110-15
AMA JAGIRANI M,Soylak M Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. . 2021; 1651 - 1677. 10.3906/kim-2110-15
Vancouver JAGIRANI M,Soylak M Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. . 2021; 1651 - 1677. 10.3906/kim-2110-15
IEEE JAGIRANI M,Soylak M "Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique." , ss.1651 - 1677, 2021. 10.3906/kim-2110-15
ISNAD JAGIRANI, Muhammad Saqaf - Soylak, Mustafa. "Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique". (2021), 1651-1677. https://doi.org/10.3906/kim-2110-15
APA JAGIRANI M, Soylak M (2021). Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. Turkish Journal of Chemistry, 45(6), 1651 - 1677. 10.3906/kim-2110-15
Chicago JAGIRANI Muhammad Saqaf,Soylak Mustafa Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. Turkish Journal of Chemistry 45, no.6 (2021): 1651 - 1677. 10.3906/kim-2110-15
MLA JAGIRANI Muhammad Saqaf,Soylak Mustafa Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. Turkish Journal of Chemistry, vol.45, no.6, 2021, ss.1651 - 1677. 10.3906/kim-2110-15
AMA JAGIRANI M,Soylak M Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. Turkish Journal of Chemistry. 2021; 45(6): 1651 - 1677. 10.3906/kim-2110-15
Vancouver JAGIRANI M,Soylak M Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique. Turkish Journal of Chemistry. 2021; 45(6): 1651 - 1677. 10.3906/kim-2110-15
IEEE JAGIRANI M,Soylak M "Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique." Turkish Journal of Chemistry, 45, ss.1651 - 1677, 2021. 10.3906/kim-2110-15
ISNAD JAGIRANI, Muhammad Saqaf - Soylak, Mustafa. "Supramolecular solvents: a review of a modern innovation in liquid-phase microextraction technique". Turkish Journal of Chemistry 45/6 (2021), 1651-1677. https://doi.org/10.3906/kim-2110-15