Yıl: 2022 Cilt: 22 Sayı: 1 Sayfa Aralığı: 52 - 60 Metin Dili: İngilizce DOI: 10.5152/electrica.2021.21044 İndeks Tarihi: 03-07-2022

Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions

Öz:
Determining and modeling the wind speed characteristics of a region are important in terms of constructing the wind energy conversion systems. Several distribution functions such as Finsler geometry, two-parameter Weibull, and Rayleigh are proposed for wind speed modeling in the literature. The modeling performance of Finsler geometry method at high and low speeds was not investigated in the literature, although a model proposal was presented in the studies on Finsler geometry. In addition, there is no comparison in terms of power density. This paper presents the comparative performance analysis of Finsler geometry for modeling the wind speed data. The Finsler geometry method allows accurate modeling and describes the ability for chaotic structures like wind speed data. The two-parameter Weibull, Rayleigh, and Finsler Geometry are used to analyze the wind speed data between October 2015 and September 2016 in Bilecik, Gökçeada, and Bozcaada, which are located in the northwest of Turkey. The obtained results show that the novel method based on Finsler geometry is a better alternative to the two-parameter Weibull and the Rayleigh probability density functions to describe wind speed characteristics.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. H. Zhang, X. Hu, H. Cheng, S. Zhang, S. Hong and Q. Gu , “Coordinated scheduling of generators and tie lines in multi-area power systems under wind energy uncertainty,” Energy, vol. 222, 2021. [CrossRef]
  • 2. Türkiye Rüzgar Enerjisi Birliği (TÜREB), Turkish Wind Energy Association, Turkish Wind Energy Statistics Report, 2020. 3. C. Nemes and M. Istrate, “Statistical analysis of wind turbine’s output power,” ElAEE, vol. 120, no. 4, pp. 31–34, 2012. [CrossRef]
  • 4. A. Serban, L. S. Paraschiv, and S. Paraschiv, “Assessment of wind energy potential based on Weibull and Rayleigh distribution models,” Energy Rep., vol. 6, pp. 250–267, 2020. [CrossRef]
  • 5. E. Dokur, S. Ceyhan, and M. Kurban, “Comparative analysis of wind speed models using different Weibull distributions,” Electrica, vol. 19, no. 1, pp. 22–28, 2019. [CrossRef]
  • 6. P. Tiam Kapen, M. Jeutho Gouajio, and D. Yemélé, “Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon,” Renew. Energy, vol. 159, pp. 1188–1198, 2020. [CrossRef]
  • 7. A. N. Celik, “A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey,” Renew. Energy, vol. 29, no. 4, pp. 593–604, 2004. [CrossRef]
  • 8. P. Wais, “A review of Weibull functions in wind sector,” Renew. Sustain. Energy Rev., vol. 70, pp. 1099–1107, 2017. [CrossRef]
  • 9. W. E. Bardsley, “Note on the use of the inverse Gaussian distribution for wind energy applications,” J. Appl. Meteorol., vol.19, no. 9, pp. 1126–1130, 1980. [CrossRef]
  • 10. E. Dokur, S. Ceyhan, and M. Kurban, “Rüzgar enerji dönüşüm sistemlerinde Finsler geometrisi tabanlı yeni bir yaklaşim,” EMO Bilimsel Dergi., vol.8, pp.71–77, 2018.
  • 11. W. Werapun, Y. Tirawanichakul, and J. Waewsak, “Comparative study of five methods to estimate Weibull parameters for wind speed on Phangan Island, Thailand,” Energy Procedia, vol. 79, pp. 976–981, 2015. [CrossRef]
  • 12. K. Azad, M. Rasul, P. Halder, and J. Sutariya, “Assessment of wind energy prospect by Weibull distribution for prospective wind sites in Australia,” Energy Procedia, vol. 160, pp. 348–355, 2019. [CrossRef]
  • 13. S. Deep,A. Sarkar, M. Ghawat, and M. K. Rajak, “Estimation of the wind energy potential for coastal locations in India using the Weibull model,” Renew. Energy, vol. 161, pp. 319–339, 2020. [CrossRef]
  • 14. W. Mohammed and W. Elmasry, “Statistical analysis of wind energy potential using different estimation methods for Weibull parameters: A case study,” Electr. Eng., pp. 1–22, 2021. [CrossRef]
  • 15. F. G. Akgül, B. Şenoğlu, and T. Arslan, “An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution,” Energy Convers. Manag., vol. 114, pp. 234–240, 2016. [CrossRef]
  • 16. E. Dokur, S. Ceyhan, and M. Kurban, “Finsler geometry for two-parameter Weibull distribution function,” Math. Probl. Eng., vol. 2017, pp. 1–6, 2017. [CrossRef]
  • 17. S. Markvorsen, “A Finsler geodesic spray paradigm for wildfire spread modelling,” Nonlinear Anal. Real World Appl., vol. 28, pp. 208–228, 2016. [CrossRef]
  • 18. P. L. Antonelli, A. Bona, and M. A. Slawinski, “Seismic rays as Finsler geodesics,” Nonlinear Anal. Real World Appl., vol. 4, no. 5, pp. 711–722, 2003. [CrossRef]
  • 19. T. Yajima and H. Nagahama, “Finsler geometry for nonlinear path of fluid flow through inhomogeneous media,” Nonlinear Anal. Real World Appl., vol. 25, pp. 1–8, 2015. [CrossRef]
  • 20. D. Bao, C. Robles, and Z. Shen, “Zermelo navigation on Riemannian manifolds,” J. Differ. Geom., vol. 66, no. 3, pp. 377–435, 2004. [CrossRef]
  • 21. M. Matsumoto, “Geodesics of two-dimensional Finsler spaces,” Math. Comput. Modell., vol. 20, no. 4–5, pp. 1–23, 1994. [CrossRef]
  • 22. M. Carrasco-Diaz, D. Rivas, M. Orozco-Contreras, and O. Sanchez-Montante, “An assessment of wind power potential along the coast of Tamaulipas, Northeastern Mexico,” Renew. Energy, vol. 78, pp. 295–305, 2015. [CrossRef]
  • 23. J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained: Theory, Design and Application. Chichester, England: JohnWiley & Sons, 2010.
  • 24. S. Mathew, Wind Energy: Fundamentals, Resource Analysis and Economics, vol. 1. Heidelberg, Germany: Springer, 2006.
  • 25. O. Alavi, A. Sedaghat, and A. Mostafaeipour, “Sensitivity analysis of different wind speed distribution models with actual and truncated wind data: A case study for Kerman, Iran,” Energy Convers. Manag., vol. 120, pp. 51–61, 2016. [CrossRef]
  • 26. E. H. Lysen, Introduction to Wind Energy, SWD 82–1. Amersfoort, The Netherlands: SWD Publication, 1983.
  • 27. D. K. Kidmo, R. Danwe, S. Y. Doka, and N. Djongyang, “Statistical analysis of wind speed distribution based on six Weibull methods for wind power evaluation in Garoua, Cameroon,” Rev. Energ. Renouvelables, vol. 18, no. 1, pp. 105–125, 2015.
APA Dokur E, ceyhan s, Kurban M (2022). Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. , 52 - 60. 10.5152/electrica.2021.21044
Chicago Dokur Emrah,ceyhan salim,Kurban Mehmet Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. (2022): 52 - 60. 10.5152/electrica.2021.21044
MLA Dokur Emrah,ceyhan salim,Kurban Mehmet Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. , 2022, ss.52 - 60. 10.5152/electrica.2021.21044
AMA Dokur E,ceyhan s,Kurban M Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. . 2022; 52 - 60. 10.5152/electrica.2021.21044
Vancouver Dokur E,ceyhan s,Kurban M Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. . 2022; 52 - 60. 10.5152/electrica.2021.21044
IEEE Dokur E,ceyhan s,Kurban M "Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions." , ss.52 - 60, 2022. 10.5152/electrica.2021.21044
ISNAD Dokur, Emrah vd. "Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions". (2022), 52-60. https://doi.org/10.5152/electrica.2021.21044
APA Dokur E, ceyhan s, Kurban M (2022). Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. Electrica, 22(1), 52 - 60. 10.5152/electrica.2021.21044
Chicago Dokur Emrah,ceyhan salim,Kurban Mehmet Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. Electrica 22, no.1 (2022): 52 - 60. 10.5152/electrica.2021.21044
MLA Dokur Emrah,ceyhan salim,Kurban Mehmet Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. Electrica, vol.22, no.1, 2022, ss.52 - 60. 10.5152/electrica.2021.21044
AMA Dokur E,ceyhan s,Kurban M Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. Electrica. 2022; 22(1): 52 - 60. 10.5152/electrica.2021.21044
Vancouver Dokur E,ceyhan s,Kurban M Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions. Electrica. 2022; 22(1): 52 - 60. 10.5152/electrica.2021.21044
IEEE Dokur E,ceyhan s,Kurban M "Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions." Electrica, 22, ss.52 - 60, 2022. 10.5152/electrica.2021.21044
ISNAD Dokur, Emrah vd. "Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions". Electrica 22/1 (2022), 52-60. https://doi.org/10.5152/electrica.2021.21044