Yıl: 2022 Cilt: 15 Sayı: 2 Sayfa Aralığı: 129 - 147 Metin Dili: İngilizce İndeks Tarihi: 05-07-2022

Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives

Öz:
In this study, methoxy benzoin compounds (1-10) were synthesized from the corresponding aromatic aldehydes based on a screening of biological activity. Oxidation and reduction of benzoins (1-10) yielded the corresponding benzils (11-20) and stilbenoids (21-29), respectively. The enzyme inhibition, antimicrobial, and antioxidant activities of 1-29 were evaluated. 1, 14, 19, and 28 against α-amylase, 15 and 19 against α-glucosidase, 2, 4, 14, 18, 25 and 26 against tyrosinase, 2, 7, and 23 against AChE, and 7, and 13 against BChE showed similar activity to the standard used. Among the methoxy benzoin derivatives, 4 proved to be the most active compound against E.coli, Y.pseudotuberculosis, M. smegmatis, and C.albicans in the range of 41-82 μg/mL MIC values. All benzil derivatives displayed bioactivity against M.smegmatis and C. albicans. Compounds 18 and 11 were found to be most effective against M.smegmatis, and compounds 11 and 17 were found to be the most effective against C.albicans. All stilbenoid type compounds showed selective activity against B.cereus. Compounds 21 and 22 were the most effective stilbenoid compounds against M. smegmatis. Benzoins (1-10) were the most effective antioxidants among all three groups compared to the tested methods, which can be attributed to the free hydroxyl at the benzylic position. As a result, the change of carbon skeleton and substitution at different positions of synthesized organic compounds also caused the variation of biological activity
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Sreelatha, T.; Hymavathi, A.; Rama Subba Rao, V.; Devanand, P.; Usha Rani, P.; Madhusudana Rao, J.; Suresh Babu, K. A new benzil derivative from Derris scandens: Structure-insecticidalactivity study. Bioorg. Med. Chem. Lett. 2010, 20, 549-553.
  • [2] Yaylı, N.; Kılıç, G.; Çelik, G.; Kahriman, N.; Kanbolat, Ş.; Bozdeveci, A.; Alpay Karaoğlu, Ş.; Aliyazıcıoğlu, R.; Sellitepe, H. E.; Doğan, İ.S.; Aydın, A. Synthesis of hydroxy benzoin/benzil analogs and investigation of their antioxidant, antimicrobial, enzyme inhibition, and cytotoxic activities. Turk. J. Chem. 2021, 45, 788-804.
  • [3] Mousset, C.; Giraud, A.; Provot, O.; Hamze, A.; Bignon, J.; Liu, J.-M.; Thoret, S.; Dubois, J.; Brion, J.-D.; Alami, M. Synthesis and antitumor activity of benzils related to combretastatin A-4. Bioorg. Med. Chem. Lett. 2008, 18, 3266-3271.
  • [4] Sabbah, D. A.; Ibrahim, A.H.; Talib, W. H.; Alqaisi, K. M.; Sweidan, K.; Bardaweel, S. K.; Sheikha, G. A.; Zhong, H. A.; Al-Shalabi, E.; Khalaf, R. A.; Mubarak, M. S. Ligand-based drug design: Synthesis and biological evaluation of substituted benzoin derivatives as potential antitumor agents. Med. Chem. 2019, 15, 417-429.
  • [5] Li, W.; Asada, Y.; Yoshikawa, T. Antimicrobial flavonoids from Glycyrrhiza glabra hairy root cultures. Planta Med. 1998, 64, 746-747.
  • [6] Chaudhuri, P.K.; Thakur, R.S. Narceinone, an alkaloid from Papaver somniferum. Phytochemistry 1989, 28, 2002-2003.
  • [7] Ito, M.; Matsuzaki, K.; Wang, J.; Daikonya, A.; Wang, N.L.; Yao, X.S.; Kitanaka, S. , New phenanthrenes and stilbenes from Dendrobium loddigesii. Chem. Pharm. Bull. 2010, 58, 628-633. [8] Ingert, N.; Bombarda, I.; Herbette, G.; Faure, R.; Moretti, C.; Raharivelomanana, P. Oleodaphnoic acid and coriaceol, two new natural products from the stem bark of Wikstroemia coriacea. Molecules 2013, 18, 2988-2996.
  • [9] Shen, Y.; Feng, Z.M.; Jiang, J.S.; Yang, Y.N.; Zhang, P.C. Dibenzoyl and isoflavonoid glycosides from Sophora flavescens: Inhibition of the cytotoxic effect of D-galactosamine on human hepatocyte HL-7702. J. Nat. Prod. 2013, 76, 2337-2345.
  • [10] Phuong, T.T.; Kang, H. J.; Na, M.K.; Jin, W.; Youn, U.J.; Seong, Y.H.; Song, K.S.; Min, B.S.; Bae, K.H. Antioxidant constituents from Sedum takesimense. Phytochemistry 2007, 68, 2432-2438.
  • [11] Long, H.P.; Li, F.S.; Xu, K.P.; Yang, Z.B.; Li, J.; Peng, J.; Tan, G.S. Bioactive compounds from Selaginella involven Spring that protect PC-12 cells. Chin. Chem. Lett. 2014, 25, 805-808.
  • [12] Clerici, A.; Porta, O. Reductive coupling of benzoyl cyanide and carbonyl compounds by aqueous titanium(III) ions. A new convenient and selective access to the less stable mixed benzoins, J. Org. Chem. 1993, 58,. 2889- 2893.
  • [13] Fuson, R.C.; Emerson, W.S.; Weinstock, H.H. The synthesis of mixed benzoins. J. Am. Chem. Soc. 1939, 61, 412-413.
  • [14] Arnold, R.T.; Fuson, R.C. A new synthesis of mixed benzoins. Second Paper. J. Am. Chem. Soc. 1936, 58, 1295- 1296.
  • [15] Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-Glucosidase inhibitors from plants: A natural approach to treatdiabetes. Pharmacogn. Rev. 2011, 5, 19-30.
  • [16] Halegoua-De Marzio, D.; Navarro, V.J. Hepatotoxicity of cardiovascular and antidiabetic drugs, drug-induced liver disease, 3rd edn. Chapter 29. Academic Press, 2013, 519-540.
  • [17] Oshaghi, E. A.; Goodarzi, M.T.; Higgins, V.; Adeli, K. Role of resveratrol in the management of insulin resistance and related conditions: Mechanism of action. Crit. Rev. Clin. Lab. Sci. 2017, 54, 267-293.
  • [18] Yayli, N.; Kılıç, G.; Kahriman, N.; Kanpolat, Ş.; Bozdeveci, A.; Alpay Karaoğlu, Ş.; Aliyazıcıoğlu, R.; Sellitepe, H.E.; Doğan, İ.S.; Aydın, A.; Tatar, G. Synthesis, biological evaluation (antioxidant, antimicrobial, enzyme inhibition, and cytotoxic) and molecular docking study of hydroxy methoxy benzoin/benzil analogous. Bioorg. Chem. 2021, 115, 105183.
  • [19] Sabbah, D.A.; Saada, M.; Khalaf, R.A.; Bardaweel, S.; Sweidan, K.; Al-Qirim, T.; Al-Zughier, A.; Halim, H.A.; and Sheikha, G.A. Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinostide 3-kinase (PI3Kα). Bioorg. Med. Chem. Lett. 2015, 25, 3120-3124.
  • [20] Eduardo, P.B.J.; Elvira, S.S.; and Florencia, L.G.E. Synthesis of 1,2-diphenyliminoethanols and the evaluation of their possible biological activity. J. Chem. Chem. Eng. 2020, 14, 11-15
  • [21] Hyatt, J.L.; Stacy, V.; Wadkins, R.M.; Yoon, K.J.P.; Wierdl, M.; Edwards, C.C.; Zeller, M.; Hunter, A.D.; Danks, M.K.; Crundwell, G.; Potter, P.M. Inhibition of carboxylesterases by benzil (diphenylethane-1,2-dione) and heterocyclic analogues is dependent upon the aromaticity of the ring and the flexibility of the dione moiety. J. Med. Chem. 2005, 48, 5543-5550.
  • [22] Tanaka, T.; Kawase, M.; Tani, S. Alpha-hydroxyketones as inhibitors of urease. Bioorg. Med. Chem. 2004, 12, 501-505.
  • [23] Yar, M.; Bajda, M.; Shahzad, S.; Ullah, N.; Gilani, M.A.; Ashraf, M.; Rauf, A.; Shaukat, A. Organocatalyzed solvent free an efficient novel synthesis of 2,4,5-trisubstituted imidazoles for α-glucosidase inhibition to treat diabetes. Bioorg. Chem. 2015, 58, 65-71.
  • [24] Parkinson, E.I.; Jason Hatfield, M.; Tsurkan, L.; Hyatt, J.L.; Edwards, C.C.; Hicks, L.D.; Yan, B.; Potter, P.M. Requirements for mammalian carboxylesterase inhibition by substituted ethane-1,2-diones. Bioorg. Med. Chem. 2011, 19, 4635-4643.
  • [25] Harada, T.; Nakagawa, Y.; Wadkins, R.M.; Potter, P.M.; Wheelockd, C.E. Comparison of benzil and trifluoromethyl ketone (TFK)-mediated carboxylesterase inhibition using classical and 3D-quantitative structure– activity relationship analysis. Bioorg. Med. Chem. 2009, 17, 149-164.
  • [26] Hyatt, J.L.; Tsurkan, L.; Wierdl, M.; Edwards, C.C.; Danks, M.K.; Potter, P.M. Intracellular inhibition of carboxylesterases by benzil: modulation of CPT-11 cytotoxicity. Mol. Cancer Ther. 2006, 5, 2281-2288.
  • [27] Fleming, C.D.; Bencharit, S.; Edwards, C.C.; Hyatt, J.L.; Tsurkan, L.; Bai, F.; Fraga, C.; Morton, C.L.; Howard- Williams, E.L.; Potter, P.M.; Redinbo, M.R. Intracellular inhibition of carboxylesterases by benzil: modulation of CPT-11 cytotoxicity. J. Mol. Biol. 2005, 352, 165-177.
  • [28] Meijer, J.; DePierre, J.W. Hepatic levels of cytosolic, microsomal and 'mitochondrial' epoxide hydrolases and other drug-metabolizing enzymes after treatment of mice with various xenobiotics and endogenous compounds. Chem. Biol. Interact. 1987, 62, 249-269.
  • [29] Papadopoulos, D.; Seidegård, J.; Georgellis, A.; Rydström, J. Subcellular distribution, catalytic properties and partial purification of epoxide hydrolase in the human adrenal gland. Chem. Biol. Interact. 1985, 55, 249-260.
  • [30] Basu, S.; Prathipati, P.; Thorat, S.; Ansari, S.; Patel, M.; Jain, V.; Jinugu, R.R.; Niranjan, S.; De, S.; Reddy, S. Rational design, synthesis, and structure-activity relationships of 5-amino-1H-pyrazole-4-carboxylic acid derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. 2017, 25, 67-74.
  • [31] Addanki, A.; Nadendla, R.R. Synthesis, characterization and antimicrobial activity of di-nitro benzil by conventional and microwave irradiation methods. IJRPB, 2017, 5, 371-378.
  • [32] Nithya, G.; Sudha, R.; Priyatharesini, P.I. Biological activity and molecular docking of 4,4'-dimethoxy-l,2- diphenylethane-1,2-dione. Oxid. Commun. 2020, 43, 661-668.
  • [33] Nithya, G.; Sudha, R.; Kanakam Charles, C. Biological activity and molecular docking of 2'-bromo-4-methoxy-3- nitro benzil, 2,2'-dibromo benzil, and 4,4'-dichloro benzil. Asian J. Pharm. Clin. Res. 2018, 11, 351-355
  • [34] Nithya, G.; Kanakam Charles, C.; Sudha, R. Synthesis, characterization, study of biological activity and molecular docking of benzil and its substituted analogs. Int. J. ChemTech Res. 2015, 8, 241-249.
  • [35] Zarnegar, Z.; Safari, J. Green chemistry-mediated synthesis of benzil by using nano-MgO. J. Exp. Nanosci. 2015, 10, 651-661.
  • [36] Blay, G.; Fernández, I.; Monje, B.; Montesinos-Magraner, M.; Pedro, J.R. (S)-Mandelic acid enolate as a chiral benzoyl anion equivalent for the enantioselective synthesis of non-symmetrically substituted benzoins. Tetrahedron 2011, 67, 881-890.
  • [37] Kothapalli, R.B.; Niddana, R.; Balamurugan, R. Synthesis of chiral α-diarylacetic esters by stereospecific 1,2-aryl migration promoted by in situ generated acetals from benzoins. Org. Lett. 2014, 16, 1278-1281. [38] Bilir, G.; Demir, A.S.; Özçubukçu, S. Enzyme-catalyzed trans-benzoin condensation. JOTCSA 2018, 5, 737-750.
  • [39] Yasuhiko, A.; Junto, A. Constitution of hydrangenol and phyllodulcin. II. Ber. Dtsch. Chem. Ges. 1930, 63B, 429- 437.
  • [40] Assadieskanda, A.; Amini, M.; Ostad, S.N.; Riazi, G.H.; Cheraghi-Shavi, T.; Shafiei, B.; Shafiee, A. Design, synthesis, cytotoxic evaluation and tubulin inhibitory activity of 4-aryl-5-(3,4,5-trimethoxyphenyl)-2-alkylthio- 1H-imidazole derivatives. Bioorg. Med. Chem. 2013, 21, 2703-2709.
  • [41] Monreal-Leyv, I.; Attema, B.R.; Bae, N.; Cao, H.; Palencia, H. Benzoin condensation of aromatic aldehydes catalyzed by N-heterocyclic carbenes under mild conditions. Eur. J. Chem. 2019, 10, 1-6.
  • [42] Yu. Dubovtsev, A.; Shcherbakov, N.V.; Dar’in, D.V.; Yu. Kukushkin, V. Nature of the nucleophilic oxygenation reagent is key to acid-free gold-catalyzed conversion of terminal and internal alkynes to 1,2‑dicarbonyls. J. Org. Chem. 2020, 85, 745-757.
  • [43] Chand, S.; Kumar Pandey, A.; Singh, R.; Singh, K.N. Visible-light-induced photocatalytic oxidative decarboxylation of cinnamic acids to 1,2-diketones. J. Org. Chem. 2021, 86, 6486-6493.
  • [44] Song, T.; Zhou, X.; Wang, X.; Xiao, J.; Yang, Y. One-pot cascade synthesis of α-diketones from aldehydes and ketones in water by using a bifunctional iron nanocomposite catalyst. Green Chem. 2021, 23, 1955-1959.
  • [45] Prieto, E.; Infante, R.; Nieto, J.; Andrés. C. Dimethylzinc-mediated enantioselective addition of terminal alkynes to 1,2-diketones using perhydro-1,3-benzoxazines as ligands. Org. Biomol. Chem. 2021, 19, 3859-3867.
  • [46] Matsuda, T.; Oyama, S. Synthesis of unsymmetrical benzils via palladium-catalysed α-arylation–oxidation of 2- hydroxyacetophenones with aryl bromides. Org. Biomol. Chem. 2020, 18, 3679-3683.
  • [47] Trosien, S.; Waldvogel, S.R. Synthesis of highly functionalized 9,10-phenanthrenequinones by oxidative coupling using MoCl5. Org. Lett. 2012, 14, 2976-2979.
  • [48] Aydin, E.A.; Altenbach, H.J. Fluorogenic Diels–Alder reactions of novel phencyclone derivatives. Tetrahedron Lett. 2013, 54, 1832-1834.
  • [49] Liu, X.X.; Tang, M.L.; Zhong, C.; Tang, Y.; Yu, J.M.; Sun, X. Design, synthesis and biological evaluation of novel indone derivatives as selective ERβ modulators. Med. Chem. Res. 2019, 28, 1010-1026.
  • [50] Truong, D.; Howard, B.L.; Thompson, P.E. Regioselection in the synthesis of 4-benzyltetral-1-ones and the new 4-arylbenzosuber-1-ones. Tetrahedron 2021, 85, 132034.
  • [51] Wang, X.; Chen, R.X.; Wei, Z.F.; Zhang, C.Y.; Tu, H.Y.; Zhang, A.D. Chemoselective transformation of diarylethanones to arylmethanoic acids and diarylmethanones and mechanistic insights. J. Org. Chem. 2016, 81, 238-249.
  • [52] Chen, X.; Chen, Z.; So, C.M. Exploration of aryl phosphates in palladium-catalyzed mono-α-arylation of aryl and heteroaryl ketones. J. Org. Chem. 2019, 84, 6337-6346.
  • [53] Churruca, F.; SanMartin, R.; Carril, M.; Tellitu, I.; Dominguez, E. Towards a facile synthesis of triarylethanones: Palladium-catalyzed arylation of ketone enolates under homogeneous and heterogeneous conditions. Tetrahedron 2004, 60, 2393-2408.
  • [54] Lunchev, A.V.; Hendrata, V.C.; Jaggi, A.; Morris, S.A.; Ganguly, R.; Chen, X.; Sun, H.; Grimsdale, A.C. A Friedländer route to 5,7-diazapentacenes. J. Mater. Chem. 2018, 6, 3715-3721.
  • [55] Romero, M.A.; González-Delgado, J.A.; Arteaga, J.F. Synthesis of stilbene derivatives: A comparative study of their antioxidant activities. Nat. Prod. Commun. 2015, 10, 1257-1262.
  • [56] Zhou, X.; Zhao, Y.; Cao, Y.; He, L. Catalytic efficient Nazarov Reaction of unactivated aryl vinyl ketones via a bidentate diiron lewis acid activation strategy. Adv. Synth. Catal. 2017, 359, 3325-3331.
  • [57] Ashnagar, A.; Aseri, N.G.; Amini, N.M. Synthesis of 5,5-diphenyl-2,4-imidazolidinedione (Phenytoin) from almond. Int. J. ChemTech Res. 2009, 1, 47-52.
  • [58] Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodi, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004, 24:5A, 2783-2840.
  • [59] Woods, G. L.; Brown-Elliott, B. A.; Desmond, E.P.; Hall, G.S.; Heifets, L. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes. Approved Standard NCCLS document M24-A, 2003, 23: 18.
  • [60] Abbas, I.; Gomha, S.; Elneairy, M.; Elaasser, M.; Mabrouk, B. Synthesis and biological evaluation of novel fused triazolo[4,3-a] pyrimidinones. Turk. J. Chem. 2015, 39, 510
  • [61] Perez, C.; Pauli, M.; Bazerque, P. An antibiotic assay by agar well diffusion method. Acta Biol. Med. Exp. 1990, 15, 113-115.
  • [62] National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 3rd edn. Approved Standard NCCLS Document M7-A3, NCCLS Villanova, PA, 1993, 13:25.
  • [63] Kahriman, N.; Yayli, B.; Yucel, M.; Alpay Karaoglu, S.; Yayli, N. Chemical constituents and antimicrobial activity of the essential oil from Vicia dadianorum extracted by hydro and microwave distillations. Rec. Nat. Prod. 2012, 6, 49-56.
  • [64] Yayli, N.; Oksuz, E.; Korkmaz, B.; Erik, I.; Fandakli, S.; Faiz, O.; Coskuncelebi, K. Volatile and phenolic contents, antimicrobial and tyrosinase activities of two endemic species Scorzonera pisidica and Scorzonera sandrasica L. grown in Turkey. Rec. Nat. Prod. 2022, 16, 46-57.
  • [65] Benzie, I.F.F.; and Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 1996, 239, pp. 70-76.
  • [66] Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E.; Erçağ, E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006, 57, 292-304.
  • [67] Ertaş, A.; Boğa, M.; Haşimi, N.; Yeşil, Y.; Gören, A.C.; Topcu, G.; Kolak, U. Antioxidant, anticholinesterase, and antimicrobial activities and fatty acid constituents of Achillea cappadocica Hausskn. et Bornm. Turk. J. Chem. 2014, 38, 592-599.
  • [68] Muğlu, H.; Yakan, H.; Bakır, T.K. Synthesis, spectroscopic studies, and antioxidant activities of novel thio/carbohydrazones and bis-isatin derivatives from terephthalaldehyde. Turk. J. Chem. 2020, 44, 237-248.
  • [69] Alp, A.S.; Kilcigil, G.; Özdamar, E.D.; Çoban, T.; Eke, B. Synthesis and evaluation of antioxidant activities of novel 1,3,4-oxadiazole and imine containing 1H-benzimidazoles. Turk. J. Chem. 2015, 39, 42-53.
  • [70] Kirby, A.J. Schmidt, R.J. The antioxidant activity of Chinese herbs for eczema and of placebo herbs-I. J. Ethnopharmacol. 1997, 56, 103-108.
  • [71] Baran, A.; Karakilic, E.; Faizz, Ö.; Özen, F. Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. Org. Commun. 2020, 13, 65-78.
  • [72] Küçükbay, H.; Parladı, F. M.; Küçükbay, F. Z.; Angeli, A.; Bartolucci, G.; Supuran, C. T. Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopeptide-anthraquinone conjugates. Org. Commun. 2019, 14,255-269.
  • [73] Topal, M. Secondary metabolites of ethanol extracts of Pinus sylvestris cones from Eastern Anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Rec. Nat. Prod. 2019, 14, 129-138. [74] Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-2791.
  • [75] Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; Chun, M.; Li, P.; Gohara, D.W.; Dolinsky, T.; Konecny, R.; Koes, D.R.; Nielsen, J.E., Head-Gordon, T.; Geng, W.; Krasny, R.; Wei, G.W.; Holst, M.J.; McCammon, J.A.; Baker, N.A. Improvements to the APBS biomolecular solvation software suite. Protein Sci., 2018, 27, 112-128.
  • [76] Ravindranath, P.A.; Forli, S.; Goodsell, D.S.; Olson, A.J.; Sanner, M.F. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. PLOS Comput. Biol., 2015, 11, e1004586.
  • [77] Dassault Systemes BIOVIA. Discovery studio modeling environment, release 2020. San Diego: Dassault Systemes; 2019.
  • [78] Yang, X.W.; Huang, M.Z.; Jin, Y.S.; Sun, L.N.; Song, Y.; Chen, H.S. Phenolics from Bidens bipinnata and their amylase inhibitory properties. Fitoterapia 2012, 83, 1169-1175.
  • [79] Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197-201. Tuğrak, M.; Gül, H.I.; Anıl, B.; Gülçin, İ. Synthesis and pharmacological effects of novelbenzenesulfonamides carrying benzamide moiety as carbonic anhydrase and acetylcholinesterase inhibitors. Turk. J. Chem. 2020, 44, 1601-1609.
  • [80] Yigitkan, S.; Akdeniz, M.; Yener, I.; Fırat, M.; Senturk, K.; Alkan, H.; Yılmaz, M. A.; Ozturk, M.; Ertas, A. Chemical composition and biological activity of Ixiolirion tataricum (Pall.) Schult. & Schult. f. var. tataricum. population. Rec. Agr. Food. Chem. 2021, 1, 27-34.
  • [81] Hyatt, J.L.; Moak, T.; Hatfield, M.J.; Tsurkan, L.; Edwards, C.; Wierdl, M.; Danks, M.K.; Wadkins, R.M.; Potter, P.M. Selective inhibition of carboxylesterases by isatins, indole-2,3-diones. J. Med. Chem. 2007, 50, 1876-1885.
  • [82] Maharramov, A.; Kurbanova, M.; Taslimi, P.; Demir, Y;, Safarova, A.; Huseyinov, E.; Sujayev, A.; Alwasel, S.H.; Gulcin, İ. Synthesis, characterization, crystal structure and bioactivities of novel enamine and pyrrole derivatives endowed with acetylcholinesterase, α-glycosidase and human carbonic anhydrase inhibition effects. Org. Commun. 2021, 14, 144-156.
  • [83] Williams, L.K.; Zhang, X.; Caner, S.; Tysoe, C.; Nguyen, N.T.; Wicki, J., Williams, D.E.; Coleman, J.; McNeill, J.H.; Yuen, V.; Andersen, R.J.; Withers, S.G.; Brayer, G.D. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Nat. Chem. Biol. 2015, 11, 691-696.
  • [84] Roig-Zamboni, V.; Cobucci-Ponzano, B.; Iacono, R.; Ferrara, M.C.; Germany, S.; Bourne, Y.; Parenti, G.; Moracci, M.; Sulzenbacher, G. Structure of human lysosomal acid α-glucosidase-a guide for the treatment of Pompe disease. Nature Commun. 2017, 8, 1111.
  • [85] Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012, 55, 10282-1028.
  • [86] Meden, A.;, Knez, D.;, Jukič, M.;, Brazzolotto, X.; Gršič, M.; Pišlar, A.; Zahirović, A.; Kos, J.; Nachon, F.; Svete, J.; Gobec, S.; Grošelj, U. Tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer's disease. Chem. Commun. (Camb). 2019, 55, 3765-3768.
  • [87] Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011, 50, 5477-8486.
APA YAYLI N, Kahriman N, BOZDAL G, Serdaroğlu V, aliyazicioglu r, SELLİTEPE H, Alpay Karaoğlu Ş, Tatar Yılmaz G (2022). Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. , 129 - 147.
Chicago YAYLI Nurettin,Kahriman Nuran,BOZDAL Gözde,Serdaroğlu Vildan,aliyazicioglu rezzan,SELLİTEPE Hasan Erdinç,Alpay Karaoğlu Şengül,Tatar Yılmaz Gizem Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. (2022): 129 - 147.
MLA YAYLI Nurettin,Kahriman Nuran,BOZDAL Gözde,Serdaroğlu Vildan,aliyazicioglu rezzan,SELLİTEPE Hasan Erdinç,Alpay Karaoğlu Şengül,Tatar Yılmaz Gizem Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. , 2022, ss.129 - 147.
AMA YAYLI N,Kahriman N,BOZDAL G,Serdaroğlu V,aliyazicioglu r,SELLİTEPE H,Alpay Karaoğlu Ş,Tatar Yılmaz G Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. . 2022; 129 - 147.
Vancouver YAYLI N,Kahriman N,BOZDAL G,Serdaroğlu V,aliyazicioglu r,SELLİTEPE H,Alpay Karaoğlu Ş,Tatar Yılmaz G Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. . 2022; 129 - 147.
IEEE YAYLI N,Kahriman N,BOZDAL G,Serdaroğlu V,aliyazicioglu r,SELLİTEPE H,Alpay Karaoğlu Ş,Tatar Yılmaz G "Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives." , ss.129 - 147, 2022.
ISNAD YAYLI, Nurettin vd. "Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives". (2022), 129-147.
APA YAYLI N, Kahriman N, BOZDAL G, Serdaroğlu V, aliyazicioglu r, SELLİTEPE H, Alpay Karaoğlu Ş, Tatar Yılmaz G (2022). Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. Organic Communications, 15(2), 129 - 147.
Chicago YAYLI Nurettin,Kahriman Nuran,BOZDAL Gözde,Serdaroğlu Vildan,aliyazicioglu rezzan,SELLİTEPE Hasan Erdinç,Alpay Karaoğlu Şengül,Tatar Yılmaz Gizem Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. Organic Communications 15, no.2 (2022): 129 - 147.
MLA YAYLI Nurettin,Kahriman Nuran,BOZDAL Gözde,Serdaroğlu Vildan,aliyazicioglu rezzan,SELLİTEPE Hasan Erdinç,Alpay Karaoğlu Şengül,Tatar Yılmaz Gizem Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. Organic Communications, vol.15, no.2, 2022, ss.129 - 147.
AMA YAYLI N,Kahriman N,BOZDAL G,Serdaroğlu V,aliyazicioglu r,SELLİTEPE H,Alpay Karaoğlu Ş,Tatar Yılmaz G Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. Organic Communications. 2022; 15(2): 129 - 147.
Vancouver YAYLI N,Kahriman N,BOZDAL G,Serdaroğlu V,aliyazicioglu r,SELLİTEPE H,Alpay Karaoğlu Ş,Tatar Yılmaz G Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives. Organic Communications. 2022; 15(2): 129 - 147.
IEEE YAYLI N,Kahriman N,BOZDAL G,Serdaroğlu V,aliyazicioglu r,SELLİTEPE H,Alpay Karaoğlu Ş,Tatar Yılmaz G "Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives." Organic Communications, 15, ss.129 - 147, 2022.
ISNAD YAYLI, Nurettin vd. "Molecular docking, synthesis and biological evaluation (enzyme inhibition, antimicrobial and antioxidant) of methoxy benzoin/benzil/stilbenoid derivatives". Organic Communications 15/2 (2022), 129-147.