Yıl: 2022 Cilt: 19 Sayı: 3 Sayfa Aralığı: 353 - 370 Metin Dili: İngilizce DOI: 10.4274/tjps.galenos.2021.70105 İndeks Tarihi: 05-07-2022

Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article

Öz:
Thiazolidinedione (TZD), a class of drugs that are mainly used to control type 2 diabetes mellitus (T2DM), acts fundamentally as a ligand of peroxisome proliferator-activated receptors (PPARs). Besides activating pathways responsible for glycemic control by enhancing insulin sensitivity and lipid homeostasis, activating PPARs leads to exciting other pathways related to bone formation, inflammation, and cell proliferation. Unfortunately, this diverse effect of activating several pathways may show in some studies adverse health outcomes as osteological, hepatic, cardiovascular, and carcinogenic effects. Thus, a silver demand is present to find and develop new active and potent antiglycemic drugs for treating T2DM. To achieve this goal, the structure of TZD for research is considered a leading structure domain. This review will guide future research in the design of novel TZD derivatives by highlighting the general modifications conducted on the structure component of TZD scaffold affecting their potency, binding efficacy, and selectivity for the control of T2DM.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81-90.
  • 2. Craig ME, Hattersley A, Donaghue KC. Definition, epidemiology and classification of diabetes in children and adolescents. Pediatr Diabetes. 2009;10(Suppl 12):3-12.
  • 3. Craig ME, Jefferies C, Dabelea D, Balde N, Seth A, Donaghue KC; International Society for Pediatric and Adolescent Diabetes. ISPAD Clinical Practice Consensus Guidelines 2014. Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2014;15(Suppl 20):4-17.
  • 4. Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92:63-69.
  • 5. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39:481-497.
  • 6. Saeedi P, Salpea P, Karuranga S, Petersohn I, Malanda B, Gregg EW, Unwin N, Wild SH, Williams R. Mortality attributable to diabetes in 20-79 years old adults, 2019 estimates: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2020;162:108086.
  • 7. Patterson CC, Karuranga S, Salpea P, Saeedi P, Dahlquist G, Soltesz G, Ogle GD. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107842.
  • 8. American Diabetes Association. 13. children and adolescents: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S148-S164.
  • 9. Xu G, Liu B, Sun Y, Du Y, Snetselaar LG, Hu FB, Bao W. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. BMJ. 2018;362:k1497.
  • 10. IDF diabetic atlas 9th edition. Global diabetic data report 2010-2045. Int Diab Fed. 2019. Available from: https://diabetesatlas.org/data/en/ world/
  • 11. Type 2 diabetes in children and adolescents. American Diabetes Association. Pediatrics. 2000;105(3 Pt 1):671-680.
  • 12. Sugihara S, Sasaki N, Kohno H, Amemiya S, Tanaka T, Matsuura N; Committee for the Medical Treatment of Childhood-Onset Type 2 Diabetes Mellitus, The Japanese Society for Pediatric Endocrinology. Survey of current medical treatments for childhood-onset type 2 diabetes mellitus in Japan. Clin Pediatr Endocrinol. 2005;14:65-75.
  • 13. Chiang JL, Kirkman MS, Laffel LM, Peters AL; Type 1 Diabetes Sourcebook Authors. Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care. 2014;37:2034-2054.
  • 14. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med. 2002;137:25-33.
  • 15. Naim MJ, Alam MJ, Nawaz F, Naidu VGM, Aaghaz S, Sahu M, Siddiqui N, Alam O. Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg Chem. 2017;73:24- 36.
  • 16. Franciosi M, Lucisano G, Lapice E, Strippoli GF, Pellegrini F, Nicolucci A. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review. PLoS One. 2013;8:e71583.
  • 17. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002;18(Suppl 2):S10-S15.
  • 18. Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferrannini E, Cusi K, Mandarino LJ, DeFronzo RA. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care. 2001;24:710-719.
  • 19. Parulkar AA, Pendergrass ML, Granda-Ayala R, Lee TR, Fonseca VA. Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med. 2001;134:61-71.
  • 20. Vigneri R. Diabetes: diabetes therapy and cancer risk. Nat Rev Endocrinol. 2009;5:651-652.
  • 21. Michalik L, Wahli W. Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest. 2006;116:598-606.
  • 22. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10:355-361.
  • 23. Balakumar P, Rose M, Ganti SS, Krishan P, Singh M. PPAR dual agonists: are they opening Pandora’s box? Pharmacol Res. 2007;56:91-98.
  • 24. Lemberger T, Braissant O, Juge-Aubry C, Keller H, Saladin R, Staels B, Auwerx J, Burger AG, Meier CA, Wahli W. PPAR tissue distribution and interactions with other hormone-signaling pathways. Ann N Y Acad Sci. 1996;804:231-251.
  • 25. Wagner ER, He BC, Chen L, Zuo GW, Zhang W, Shi Q, Luo Q, Luo X, Liu B, Luo J, Rastegar F, He CJ, Hu Y, Boody B, Luu HH, He TC, Deng ZL, Haydon RC. Therapeutic implications of PPAR gamma in human osteosarcoma. PPAR Res. 2010;2010:956427.
  • 26. Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J, Reddy JK. Coactivators in PPAR-regulated gene expression. PPAR Res. 2010;2010:250126.
  • 27. Zoete V, Grosdidier A, Michielin O. Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochim Biophys Acta. 2007;1771:915-925.
  • 28. Brown JD, Plutzky J. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation. 2007;115:518-533.
  • 29. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu Rev Physiol. 2007;69:201-220.
  • 30. Khorasanizadeh S, Rastinejad F. Nuclear-receptor interactions on DNAresponse elements. Trends Biochem Sci. 2001;26:384-390.
  • 31. Nagy L, Schwabe JW. Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci. 2004;29:317-324.
  • 32. Gampe RT Jr, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE. Asymmetry in the PPARgamma/RXR alpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell. 2000;5:545-555.
  • 33. Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT Jr, McKee DD, Moore JT, Willson TM. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A. 2001;98:13919-13924.
  • 34. Sheu SH, Kaya T, Waxman DJ, Vajda S. Exploring the binding site structure of the PPAR gamma ligand-binding domain by computational solvent mapping. Biochemistry. 2005;44:1193-1209.
  • 35. Thangavel N, Al Bratty M, Akhtar Javed S, Ahsan W, Alhazmi HA. Targeting peroxisome proliferator-activated receptors using thiazolidinediones: strategy for design of novel antidiabetic drugs. Int J Med Chem. 2017;2017:1069718.
  • 36. Gale EA. Lessons from the glitazones: a story of drug development. Lancet. 2001;357:1870-1875.
  • 37. Waku T, Shiraki T, Oyama T, Fujimoto Y, Maebara K, Kamiya N, Jingami H, Morikawa K. Structural insight into PPAR gamma activation through covalent modification with endogenous fatty acids. J Mol Biol. 2009;385:188-199.
  • 38. Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martínez L, Souza PC, Saidemberg D, Deng T, Amato AA, Togashi M, Hsueh WA, Phillips K, Palma MS, Neves FA, Skaf MS, Webb P, Polikarpov I. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One. 2012;7:e36297.
  • 39. Kroker AJ, Bruning JB. Review of the structural and dynamic mechanisms of PPARγ partial agonism. PPAR Res. 2015;2015:816856.
  • 40. Choi JH, Banks AS, Estall JL, Kajimura S, Boström P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Blüher M, Griffin PR, Spiegelman BM. Antidiabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010;466:451-456.
  • 41. Kaczanowski S, Zielenkiewicz P. Why similar protein sequences encode similar three-dimensional structures?. Theor Chem Acc. 2010;125:643- 650.
  • 42. Russu WA. Thiazolidinedione anti-cancer activity: is inhibition of microtubule assembly implicated? Med Hypotheses. 2007;68:343-346.
  • 43. Fajeelath F, Baskar L. Thiazolidinediones as a privileged structural scaffold in PPAR agonists: a review. Int J Pharm Chem. 2016;6:124-141.
  • 44. Prabhakar C, Madhusudhan G, Sahadev K, Reddy CM, Sarma MR, Reddy GO, Chakrabarti R, Rao CS, Kumar TD, Rajagopalan R. Synthesis and biological activity of novel thiazolidinediones. Bioorg Med Chem Lett. 1998;8:2725-2730.
  • 45. Adeghate E, Adem A, Hasan MY, Tekes K, Kalasz H. Medicinal chemistry and actions of dual and pan PPAR modulators. Open Med Chem J. 2011;5(Suppl 2):93-98.
  • 46. Maji DE, Samanta S. A review on the role of peroxisome prolifertoractivated receptor-γ agonists and hybrids in type 2 diabetes and cardiomyopathy. Asian J Pharm Clin Res. 2015;8:1-6.
  • 47. Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metab Syndr. 2019;11:74.
  • 48. Nadanaciva S, Will Y. Predicting drug-induced mitochondrial dysfunction, Wilson AG. New horizons in predictive toxicology: current status and application (1st ed). Royal Society of Chemistry; 2011:283-301.
  • 49. Imran M, Ilyas B, Khan SA. Recent thiazolidinediones as antidiabetics. J Sc Res. 2007;66;99-109.
  • 50. Nomura M, Kinoshita S, Satoh H, Maeda T, Murakami K, Tsunoda M, Miyachi H, Awano K. (3-substituted benzyl)thiazolidine-2,4-diones as structurally new antihyperglycemic agents. Bioorg Med Chem Lett. 1999;9:533-538.
  • 51. Yanagisawa H, Fujita T, Fujimoto K, Yoshioka T, Wada K, Oguchi M, Fujiwara T, Horikoshi H. Oxime containing thiazolidinedione derivatives and analogs, their preparation, and their therapeutic use against diabetes and related conditions. European Pat. 1997;708:098.
  • 52. Gorbitz CH, Etter MC. Hydrogen bonds to carboxylate groups. The question of three-centre interactions. J Chem Soc Perkin Trans 2. 1992;2:131-135.
  • 53. Olsson TS, Williams MA, Pitt WR, Ladbury JE. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design. J Mol Biol. 2008;384:1002-1017.
  • 54. Berne BJ, Weeks JD, Zhou R. Dewetting and hydrophobic interaction in physical and biological systems. Annu Rev Phys Chem. 2009;60:85- 103.
  • 55. Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interactions. J Med Chem. 2010;53:5061-5084.
  • 56. Peters JU, Weber S, Kritter S, Weiss P, Wallier A, Boehringer M, Hennig M, Kuhn B, Loeffler BM. Aminomethylpyrimidines as novel DPP-IV inhibitors: a 10(5)-fold activity increase by optimization of aromatic substituents. Bioorg Med Chem Lett. 2004;14:1491-1493.
  • 57. Zürcher M, Diederich F. Structure-based drug design: exploring the proper filling of apolar pockets at enzyme active sites. J Org Chem. 2008;73:4345-4361.
  • 58. Agrawal R, Jain P, Dikshit SN. Balaglitazone: a second generation peroxisome proliferator-activated receptor (PPAR) gamma (γ) agonist. Mini Rev Med Chem. 2012;12:87-97.
  • 59. Higgins LS, Depaoli AM. Selective peroxisome proliferatoractivated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. Am J Clin Nutr. 2010;91:267S-272S.
  • 60. Doshi LS, Brahma MK, Bahirat UA, Dixit AV, Nemmani KV. Discovery and development of selective PPAR gamma modulators as safe and effective antidiabetic agents. Expert Opin Investig Drugs. 2010;19:489-512.
  • 61. Fujimori S, Murakami K, Tsunoda M. Preparation of substituted benzylthiazolidine-2, 4-dione derivatives as ligands of human peroxisome proliferator-activated receptor. PCT Int Appl WO. 2001;1:350.
  • 62. Fujimori S, Murakami K, Tsunoda M. Substituted benzylthiazolidine-2, 4-done dervatives. U.S. Patent no. 6,545,026 B1; date of patent: Apr. 8, 2003.
  • 63. Madhavan GR, Chakrabarti R, Vikramadithyan RK, Mamidi RN, Balraju V, Rajesh BM, Misra P, Kumar SK, Lohray BB, Lohray VB, Rajagopalan R. Synthesis and biological activity of novel pyrimidinone containing thiazolidinedione derivatives. Bioorg Med Chem. 2002;10:2671-2680.
  • 64. Pfahl M, Tachdijan C, Al-Shamma HA, Fanju A, Pleynet DP, Spran LW. Preparation of benzylidene thiazolidinediones and analoga as antidiabetics. PCT Int Appl WO, 00. 2001;16:122.
  • 65. Neogi P, Lakner FJ, Medicherla S, Cheng J, Dey D, Gowri M, Nag B, Sharma SD, Pickford LB, Gross C. Synthesis and structure-activity relationship studies of cinnamic acid-based novel thiazolidinedione antihyperglycemic agents. Bioorg Med Chem. 2003;11:4059-4067.
  • 66. Sahoo SP, Santini C, Boueres JK, Heck JV, Metzger E, Lombardo VK. Preparation of 5-(halo or alkyl)-5-aryl-2, 4-thiazolidinedione and oxazolidinedione derivatives as PPAR agonists. PCT Int Appl WO, 00. 2000;78:312.
  • 67. Lohray BB, Bhushan V, Reddy AS, Rao PB, Reddy NJ, Harikishore P, Haritha N, Vikramadityan RK, Chakrabarti R, Rajagopalan R, Katneni K. Novel euglycemic and hypolipidemic agents. 4. Pyridyl- and quinolinylcontaining thiazolidinediones. J Med Chem. 1999;42:2569-2581.
  • 68. Lohray BB, Bhushan V. Indole-containing thiazolidine-2, 4-diones as novel euglycemic and hypolipidemic agents: DRF-2189. Drugs Fut. 1999;24:751-757.
  • 69. Oguchi M, Wada K, Honma H, Tanaka A, Kaneko T, Sakakibara S, Ohsumi J, Serizawa N, Fujiwara T, Horikoshi H, Fujita T. Molecular design, synthesis, and hypoglycemic activity of a series of thiazolidine-2,4- diones. J Med Chem. 2000;43:3052-3066.
  • 70. Kallam A R, Lohray V B, Alla S R, Pingali H, Ramanujam R. Compounds having antidiabetic, hypolipidemic, antihypertensive properties, process for their preparation and pharmaceutical compositions containing them. Dr. Reddy’s Research Foundation, Hyderabad, India. U.S. Pat. No. 5,925,656. 1995 Jan 7: 08/476,385.
  • 71. Madhavan GR, Chakrabarti R, Kumar SK, Misra P, Mamidi RN, Balraju V, Kasiram K, Babu RK, Suresh J, Lohray BB, Lohrayb VB, Iqbal J, Rajagopalan R. Novel phthalazinone and benzoxazinone containing thiazolidinediones as antidiabetic and hypolipidemic agents. Eur J Med Chem. 2001;36:627-637.
  • 72. Jeon R, Park S. Synthesis and biological activity of benzoxazole containing thiazolidinedione derivatives. Arch Pharm Res. 2004;27:1099- 1105.
  • 73. Purohit SS, Veerapur VP. Benzisoxazole containing thiazolidinediones as peroxisome proliferator activated receptor-γ agonists: design, molecular docking, synthesis & antidiabetic studies. Sch Acad J Pharm. 2014;3:26- 37.
  • 74. Madhavan GR, Chakrabarti R, Reddy KA, Rajesh BM, Balraju V, Rao PB, Rajagopalan R, Iqbal J. Dual PPAR-alpha and -gamma activators derived from novel benzoxazinone containing thiazolidinediones having antidiabetic and hypolipidemic potential. Bioorg Med Chem. 2006;14:584- 591.
  • 75. Blank B, DiTullio NW, Krog AJ, Saunders HJ. Synthesis and hypoglycemic activity of some substituted 2-arylthiazolo [3.2-a] pyridinium salts. J Med Chem. 1978;21:489-492.
  • 76. Sattigeri JA, Salman M. Preparation of phenyl acetylene derivatives as agonists of PPAR receptors. PCT Int Appl WO. 2005;58:813:30.
  • 77. Onota M, Iwai Y. Preparation of benzoic acids and thiazolidinediones for N-benzyldioxothiazolidinylbenzamides as antidiabetic agents. Japanese Pat 354664. 2001;354:664.
  • 78. Müller-Schiffmann A, Sticht H, Korth C. Hybrid compounds: from simple combinations to nanomachines. BioDrugs. 2012;26:21-31.
  • 79. Chittiboyina AG, Venkatraman MS, Mizuno CS, Desai PV, Patny A, Benson SC, Ho CI, Kurtz TW, Pershadsingh HA, Avery MA. Design and synthesis of the first generation of dithiolane thiazolidinedione- and phenylacetic acid-based PPARgamma agonists. J Med Chem. 2006;49:4072-4084.
  • 80. Kumar BR, Soni M, Kumar SS, Singh K, Patil M, Baig RB, Adhikary L. Synthesis, glucose uptake activity and structure-activity relationships of some novel glitazones incorporated with glycine, aromatic and alicyclic amine moieties via two carbon acyl linker. Eur J Med Chem. 2011;46:835- 844.
  • 81. Flora SJ. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev. 2009;2:191-206.
  • 82. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003;278:11303-11311.
  • 83. Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun. 2003;301:406-410.
  • 84. Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J, Miyazaki J, Owman C, Olde B. Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res. 2005;322:207-215.
  • 85. Darwish KM, Salama I, Mostafa S, Gomaa MS, Helal MA. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur J Med Chem. 2016;109:157-172.
  • 86. Wang S, Awad KS, Elinoff JM, Dougherty EJ, Ferreyra GA, Wang JY, Cai R, Sun J, Ptasinska A, Danner RL. G protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor γ (PPARγ): an integrated two-receptor signaling pathway. J Biol Chem. 2015;290:19544-19557.
APA Qaoud M, Almasri i, Onkol T (2022). Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. , 353 - 370. 10.4274/tjps.galenos.2021.70105
Chicago Qaoud Mohammed,Almasri ihab,Onkol Tijen Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. (2022): 353 - 370. 10.4274/tjps.galenos.2021.70105
MLA Qaoud Mohammed,Almasri ihab,Onkol Tijen Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. , 2022, ss.353 - 370. 10.4274/tjps.galenos.2021.70105
AMA Qaoud M,Almasri i,Onkol T Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. . 2022; 353 - 370. 10.4274/tjps.galenos.2021.70105
Vancouver Qaoud M,Almasri i,Onkol T Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. . 2022; 353 - 370. 10.4274/tjps.galenos.2021.70105
IEEE Qaoud M,Almasri i,Onkol T "Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article." , ss.353 - 370, 2022. 10.4274/tjps.galenos.2021.70105
ISNAD Qaoud, Mohammed vd. "Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article". (2022), 353-370. https://doi.org/10.4274/tjps.galenos.2021.70105
APA Qaoud M, Almasri i, Onkol T (2022). Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. Turkish Journal of Pharmaceutical Sciences, 19(3), 353 - 370. 10.4274/tjps.galenos.2021.70105
Chicago Qaoud Mohammed,Almasri ihab,Onkol Tijen Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. Turkish Journal of Pharmaceutical Sciences 19, no.3 (2022): 353 - 370. 10.4274/tjps.galenos.2021.70105
MLA Qaoud Mohammed,Almasri ihab,Onkol Tijen Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. Turkish Journal of Pharmaceutical Sciences, vol.19, no.3, 2022, ss.353 - 370. 10.4274/tjps.galenos.2021.70105
AMA Qaoud M,Almasri i,Onkol T Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. Turkish Journal of Pharmaceutical Sciences. 2022; 19(3): 353 - 370. 10.4274/tjps.galenos.2021.70105
Vancouver Qaoud M,Almasri i,Onkol T Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article. Turkish Journal of Pharmaceutical Sciences. 2022; 19(3): 353 - 370. 10.4274/tjps.galenos.2021.70105
IEEE Qaoud M,Almasri i,Onkol T "Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article." Turkish Journal of Pharmaceutical Sciences, 19, ss.353 - 370, 2022. 10.4274/tjps.galenos.2021.70105
ISNAD Qaoud, Mohammed vd. "Peroxisome Proliferator-Activated Receptors as Superior Targets for Treating Diabetic Disease, Design Strategies - Review Article". Turkish Journal of Pharmaceutical Sciences 19/3 (2022), 353-370. https://doi.org/10.4274/tjps.galenos.2021.70105