Yıl: 2022 Cilt: 49 Sayı: 1 Sayfa Aralığı: 38 - 45 Metin Dili: İngilizce DOI: 10.52037/eads.2022.0008 İndeks Tarihi: 25-07-2022

Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods

Öz:
Dental caries is an important problem for human health which is frequently seen under clinical conditions and also progresses slowly, causes severe pain and even tooth loss, and affects the quality of life. Especially in pediatric patients, with the early detection of caries, treatment procedures can be performed with uncomplicated methods. In today’s dentistry; preventive applications and minimally invasive approaches are gaining importance, and early diagnosis of initial caries lesions is very important for minimally invasive dentistry. With the development of technology, many new methods are being introduced to ensure the early diagnosis of dental caries. In this review, conventional, contemporary, and developing approaches used in the detection of dental caries will be presented.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Gul EB, Sepet E. Okluzal Çuruk Lezyonlarının Saptan- masında Lazer Floresans Yontemi: DIAGNOdent, DIAGNO- PEN. Turkiye Klinikleri J Pediatr Dent-Special Topics. 2019;5(3):45ś50.
  • 2. Kalyoncu IO, Kuscu OO, Akyuz S. Curuk Teshisinde Gelis- mekte Olan Yontemler. Turkiye Klinikleri J Pediatr Dent- Special Topics. 2019;5(3):51ś58.
  • 3. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ. 2005;83:661ś669.
  • 4. Bala O, Akgul S. Curuk Teshis Yontemleri. Turkiye Klinikleri J Restor Dent-Special Topics. 2016;2(1):34ś40.
  • 5. Yalcinkaya SE. Dis Curugunde Radyolojik Yorumlama. Turkiye Klinikleri J Pediatr Dent-Special Topics. 2019;5(3):6ś 13.
  • 6. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51ś59. doi:10.1016/S0140-6736(07)60031-2. 7. Aren G, Cayirci M. Geleneksel Curuk Teshis Yontemleri. Turkiye Klinikleri J Pediatr Dent-Special Topics. 2019;5(3):1ś 5.
  • 8. Lussi A. Comparison of different methods for the diagnosis of őssure caries without cavitation. Caries Res. 1993;27(5):409ś 416. doi:10.1159/000261572. 9. Ozgur B, Unverdi GE, Cehreli Z. Dis Çurugunun Tespitinde Geleneksel ve Guncel Yaklaşımlar. Turkiye Klinikleri J Ped Dent-Special Topics. 2018;4(1):1ś9.
  • 10. Kuhnisch J, Goddon I, Berger S, Senkel H, Bücher K, Oehme T, et al. Development, methodology and potential of the new Universal Visual Scoring System (UniViSS) for caries detection and diagnosis. Int J Environ Res Public Health. 2009;6(9):2500ś2509. doi:10.3390/ijerph6092500.
  • 11. Nyvad B, Machiulskiene V, Belum V. Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries Res. 1999;33(4):252ś260. doi:10.1159/000016526.
  • 12. Ekstrand KR, Martignon S, Ricketts D, Qvist V. Detec- tion and activity assessment of primary coronal caries le- sions: a methodologic study. Oper Dent. 2007;32(3):225ś235. doi:10.2341/06-63.
  • 13. A H. Agız, Dis ve Cene Radyolojisi. İstanbul: Nobel Matbaacılık; 2014.
  • 14. Iannucci JM HL. Dental Radiography: Principles and Tech- niques, 5th ed. St Louis Missouri. Elsevier; 2017.
  • 15. White SC, Pharoah MJ. Oral radiology-E-Book: Principles and interpretation. Elsevier Health Sciences; 2014.
  • 16. Bader JD, Shugars DA, Bonito AJ. A systematic review of the performance of methods for identifying carious lesions. J Public Health Dent. 2002;62(4):201ś213. doi:10.1111/j.1752- 7325.2002.tb03446.x.
  • 17. Gomez J, Amin AG, Gregg L, Gailloud P. Classiőcation schemes of cranial dural arteriovenous őstulas. Neurosurg Clin. 2012;23(1):55ś62. doi:10.1016/j.nec.2011.09.003.
  • 18. Neuhaus KW, Lussi A. Carious Lesion Diagnosis: Methods, Problems, Thresholds. vol. 27. Karger Publishers; 2018.
  • 19. Abdelaziz M, Krejci I, Perneger T, Feilzer A, Vazquez L. Near in- frared transillumination compared with radiography to detect and monitor proximal caries: A clinical retrospective study. J Dent. 2018;70:40ś45. doi:10.1016/j.jdent.2017.12.008.
  • 20. Gomez J. Detection and diagnosis of the early caries lesion. In: BMC Oral Health. vol. 15. Springer; 2015. p. S3.
  • 21. Berg SC, Stahl JM, Lien W, Slack CM, Vandewalle KS. A clin- ical study comparing digital radiography and near-infrared transillumination in caries detection. J Esthet Restor Dent. 2018;30(1):39ś44. doi:10.1111/jerd.12346.
  • 22. Abogazalah N, Eckert G, Ando M. In vitro visual and vis- ible light transillumination methods for detection of nat- ural non-cavitated approximal caries. Clin Oral Investig. 2019;23(3):1287ś1294. doi:10.1007/s00784-018-2546-3.
  • 23. Eden E. Evidence-based caries prevention. Springer; 2016. 24. Akyildiz BM, Sonmez I. Dis Curugunun Erken Teshisinde Transilluminasyon Yontemleri. Turkiye Klinikleri J Pediatr Dent-Special Topics. 2019;5(3):14ś20.
  • 25. Mialhe FL, Pereira AC, de Castro Meneghim M, Ambrosano GMB, Pardi V. The relative diagnostic yields of clinical, FOTI and radiographic examinations for the detection of approxi- mal caries in youngsters. Indian J Dent Res. 2009;20(2):136. doi:10.4103/0970-9290.52881.
  • 26. Kirzioglu Z, Gungor OE. Okluzal yuz çuruklerinin tanı yon- temleri. Turkiye Klinikleri J Dental Sci. 2009;15(1):30ś39. 27. Gunduz K, Celenk P. Curuk Tanisinda Kullanilan Yeni Yon- temler. Cumhur Dent J. 2003;6(1).
  • 28. Richards D. Best clinical practice guidance for manage- ment of early caries lesions in children and young adults: an EAPD policy document. Evid-Based Dent. 2016;17(2):35ś37. doi:10.1038/sj.ebd.6401162.
  • 29. Chawla N, Messer L, Adams G, Manton D. An in vitro comparison of detection methods for approximal carious le- sions in primary molars. Caries Res. 2012;46(2):161ś169. doi:10.1159/000337099.
  • 30. Garg A, Biswas G, Saha S. Recent Advancements in Diagnosis of Dental Caries. LAP LAMBERT Academic Publishing; 2014.
  • 31. Bin-Shuwaish M, Yaman P, Dennison J, Neiva G. The corre- lation of DIFOTI to clinical and radiographic images in Class II carious lesions. J Am Dent Assoc. 2008;139(10):1374ś1381. doi:10.14219/jada.archive.2008.0049.
  • 32. Vaarkamp J, Ten Bosch J, Verdonschot E. Light propagation through teeth containing simulated caries lesions. Phys Med Biol. 1995;40(8):1375. doi:10.1088/0031-9155/40/8/006.
  • 33. Karlsson L. Caries detection methods based on changes in optical properties between healthy and carious tissue. Int J Dent. 2010;2010. doi:10.1155/2010/270729.
  • 34. Friedman J, Marcus MI. Transillumination of the oral cavity with use of őber optics. J Am Dent Assoc. 1970;80(4):801ś809. doi:10.14219/jada.archive.1970.0117.
  • 35. Schneiderman A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with digital imag- ing őber-optic translllumination (DIFOTITM): in vitro study. Caries Res. 1997;31(2):103ś110. doi:10.1159/000262384.
  • 36. Baltacioglu IH, Orhan K. Comparison of diagnostic methods for early interproximal caries detection with near-infrared light transillumination: an in vivo study. BMC Oral Health. 2017;17(1):130. doi:10.1186/s12903-017-0421-2.
  • 37. Ozkan G, Guzel KGU. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection. Lasers Med Sci. 2017;32(6):1417ś1422. doi:10.1007/s10103- 017-2265-z.
  • 38. ZEISS Optical Coherence Tomography (OCT) Sys- tems [Web Page]; 2022. Available from: https: //www.zeiss.com/meditec/int/product-portfolio/ optical-coherence-tomography-devices.html.
  • 39. Alsayed EZ, Hariri I, Sadr A, Nakashima S, Bakhsh TA, Shi- mada Y, et al. Optical coherence tomography for evaluation of enamel and protective coatings. Dent Mater J. 2015;34(1):98ś 107. doi:10.4012/dmj.2014-215.
  • 40. Hsieh YS, Ho YC, Lee SY, Chuang CC, Tsai Jc, Lin KF, et al. Den- tal optical coherence tomography. Sensors. 2013;13(7):8928ś 8949. doi:10.3390/s130708928.
  • 41. Kang H, Darling CL, Fried D. Nondestructive monitor- ing of the repair of enamel artiőcial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography. Dent Mater. 2012;28(5):488ś494. doi:10.1016/j.dental.2011.11.020.
  • 42. Lenton P, Rudney J, Chen R, Fok A, Aparicio C, Jones RS. Imag- ing in vivo secondary caries and ex vivo dental bioőlms using cross-polarization optical coherence tomography. Dent Mater. 2012;28(7):792ś800. doi:10.1016/j.dental.2012.04.004.
  • 43. Shimada Y, Sadr A, Sumi Y, Tagami J. Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Curr Oral Health Rep. 2015;2(2):73ś 80. doi:10.1007/s40496-015-0045-z.
  • 44. Yavuz BS, Kargul B. Erken Curuk Lezyonlarının Goruntu- lenmesinde ve Degerlendirilmesinde Optik Koherens Tomo- graő (OCT)’nin Kullanımı. Turkiye Klinikleri J Pediatr Dent- Special Topics. 2019;5(3):38ś44.
  • 45. Nakagawa H, Sadr A, Shimada Y, Tagami J, Sumi Y. Valida- tion of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro. J Dent. 2013;41(1):80ś89. doi:10.1016/j.jdent.2012.10.007.
  • 46. Mumcuoglu T, Erdurman C, Durukan AH. Principles and novel clinical applications of optical coherence tomography. Turk J Ophthalmol. 2008.
  • 47. Machoy M, Seeliger J, Szyszka-Sommerfeld L, Koprowski R, Gedrange T, Woźniak K. The use of optical coherence tomogra- phy in dental diagnostics: a state-of-the-art review. J Healthc Eng. 2017;2017. doi:10.1155/2017/7560645.
  • 48. Pretty IA. Caries detection and diagnosis: novel technologies. J Dent. 2006;34(10):727ś739. doi:10.1016/j.jdent.2006.06.001.
  • 49. Ashley P, Blinkhorn A, Davies R. Occlusal caries diagnosis: an in vitro histological validation of the Electronic Caries Mon- itor (ECM) and other methods. J Dent. 1998;26(2):83ś88. doi:10.1016/s0300-5712(97)00007-9.
  • 50. Tam LE, McComb D. Diagnosis of occlusal caries: Part II. Recent diagnostic technologies. J Can Dent Assoc. 2001;67(8):459ś464.
  • 51. Ersoz E, Oktay N. Alternatif curuk teshis yontem- leri. Atatürk Üni Diş Hek Fak Derg. 2002;12(2):56ś63. doi:10.17567/dfd.33412.
  • 52. Diniz MB, Rodrigues J, Lussi A. Traditional and novel caries detection methods. Contemporary approach to dental caries. 2012:105ś128.
  • 53. Ricketts D, Kidd E, Liepins P, Wilson R. Histological val- idation of electrical resistance measurements in the diag- nosis of occlusal caries. Caries Res. 1996;30(2):148ś155. doi:10.1038/sj.ebd.6401162.
  • 54. Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA. Quantiőcation of root caries using optical coherence to- mography and microradiography: a correlational study. Oral Health Prev Dent. 2004;2(4).
  • 55. Demirel A, Senay E, Okte Z, Sari S. Çürük Tespitinde Elektrik Akımı Kullanılan Yöntemler. Turkiye Klinikleri J Pediatr Dent- Special Topics. 2019;5(3):33ś37.
  • 56. Cortes D, Ellwood R, Ekstrand K. An in vitro comparison of a combined FOTI/visual examination of occlusal caries with other caries diagnostic methods and the effect of stain on their diagnostic performance. Caries Res. 2003;37(1):8ś16. doi:10.1159/000068230.
  • 57. Longbottom C, Huysmans MC. Electrical measurements for use in caries clinical trials. J Dent Res. 2004;83(1_suppl):76ś 79. doi:10.1177/154405910408301s15.
  • 58. Huysmans M, Longbottom C, Pitts N, Los P, Bruce P. Impedance spectroscopy of teeth with and without ap- proximal caries lesions-an in vitro study. J Dent Res. 1996;75(11):1871ś1878. doi:10.1177/00220345960750110901.
  • 59. Tassery H, Levallois B, Terrer E, Manton D, Otsuki M, Koubi S, et al. Use of new minimum intervention dentistry technolo- gies in caries management. Australian Dent J. 2013;58:40ś59. doi:10.1111/adj.12049.
  • 60. Katge F, Wakpanjar M, Rusawat B, Shetty A. Comparison of three diagnostic techniques for detecting occlusal dental caries in primary molars: An in vivo study. Indian J Dent Res. 2016;27(2):174. doi:10.4103/0970-9290.183133.
  • 61. Ng S, Ferguson M, Payne P, Slater P. Ultrasonic studies of un- blemished and artiőcially demineralized enamel in extracted human teeth: a new method for detecting early caries. J Dent. 1988;16(5):201ś209. doi:10.1016/0300-5712(88)90070-x.
  • 62. Yanıkoglu F, Ozturk F, Hayran O, Analoui M, Stookey G. Detec- tion of natural white spot caries lesions by an ultrasonic sys- tem. Caries Res. 2000;34(3):225ś232. doi:10.1159/000016595.
  • 63. Bozkurt F, Tagtekin D, Ynikoglu F, Fontana M, Gonzalez- Cabezas C, Stookey GK. Capability of an ultrasonic system to detect very early caries lesions on human enamel. Marmara Dent J. 2013;1(1):16ś19. doi:10.12990/MDJ2013121.
  • 64. Matalon S, Feuerstein O, Calderon S, Mittleman A, Kaffe I. Detection of cavitated carious lesions in approximal tooth surfaces by ultrasonic caries detector. Oral Surg Oral Med Oral Pathol Oral Radiol. 2007;103(1):109ś113. doi:10.1016/j.tripleo.2006.07.023.
  • 65. Pitts N. Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Res. 2004;38(3):294ś304. doi:10.1159/000077769.
  • 66. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clin- ical performance of a laser ŕuorescence device for detection of occlusal caries lesions. Eur J Oral Sci. 2001;109(1):14ś19. doi:10.1034/j.1600-0722.2001.109001014.x.
  • 67. Lussi A, Hibst R, Paulus R. DIAGNOdent: an optical method for caries detection. J Dent Res. 2004;83(1_suppl):80ś83. doi:10.1177/154405910408301s16.
  • 68. Pretty IA, Maupome G. A closer look at diagnosis in clini- cal dental practice: part 5. Emerging technologies for caries detection and diagnosis. J Can Dent Assoc. 2004;70:540ś541.
  • 69. Lussi A, Francescut P, Schaffner M. Fissur curuklerinde yeni ve geleneksel tanı yontemleri. Quintessence Turk. 2004;4:13ś 21.
  • 70. Lussi A, Imwinkelried S, Pitts N, Longbottom C, Reich E. Performance and reproducibility of a laser ŕuorescence sys- tem for detection of occlusal caries in vitro. Caries Res. 1999;33(4):261ś266. doi:10.1159/000016527.
  • 71. Moore D, Wilson N. A review of modern non-invasive systems for caries detection. CPD Dent. 2001;2:86ś90.
  • 72. Shi XQ, Welander U, Angmar-Månsson B. Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries Res. 2000;34(2):151ś158. doi:10.1159/000016583.
  • 73. De Benedetto MS, Morais CC, Novaes TF, de Almeida Ro- drigues J, Braga MM, Mendes FM. Comparing the reliabil- ity of a new ŕuorescence camera with conventional laser ŕuorescence devices in detecting caries lesions in occlusal and smooth surfaces of primary teeth. Lasers Med Sci. 2011;26(2):157ś162. doi:10.1007/s10103-010-0757-1.
  • 74. Kuhnisch J, Bucher K, Henschel V, Hickel R. Reproducibility of DIAGNOdent 2095 and DIAGNOdent Pen measurements: results from an in vitro study on occlusal sites. Eur J Oral Sci. 2007;115(3):206ś211. doi:10.1111/j.1600-0722.2007.00441.x.
  • 75. Chen J, Qin M, Ma W, Ge L. A clinical study of a laser ŕu- orescence device for the detection of approximal caries in primary molars. Int J Paediatr Dent. 2012;22(2):132ś138. doi:10.1111/j.1365-263X.2011.01180.x.
  • 76. Mendes FM, Novaes T, Matos R, Bittar D, Piovesan C, Gimenez T, et al. Radiographic and laser ŕuorescence methods have no beneőts for detecting caries in primary teeth. Caries Res. 2012;46(6):536ś543. doi:10.1159/000341189.
  • 77. Gimenez T, Braga MM, Raggio DP, Deery C, Ricketts DN, Mendes FM. Fluorescence-based methods for detect- ing caries lesions: systematic review, meta-analysis and sources of heterogeneity. PloS One. 2013;8(4). doi:10.1371/journal.pone.0060421.
  • 78. Shi X, Tranaeus S, Angmar-Mansson B. Comparison of QLF and DIAGNOdent for quantiőcation of smooth surface caries. Caries Res. 2001;35(1):21. doi:10.1159/000047426.
  • 79. Heinrich-Weltzien R, Kuhnisch J, van der Veen M, de Jos- selin de Jong E, Stober L. Quantitative light-induced ŕuores- cence (QLF)śA potential method for the dental practitioner. Quintessence Int. 2003;34(3).
  • 80. Stookey GK. Quantitative light ŕuorescence: a technology for early monitoring of the caries process. Dent Clin North Am. 2005;49(4):753ś770. doi:10.1016/j.cden.2005.05.009.
  • 81. Coulthwaite L, Pretty IA, Smith PW, Higham SM, Verran J. QLF is not readily suitable for in vivo denture plaque assessment. J Dent. 2009;37(11):898ś901. doi:10.1016/j.jdent.2009.07.002.
  • 82. Lennon A, Buchalla W, Brune L, Zimmermann O, Gross U, Attin T. The ability of selected oral microorganisms to emit red ŕuorescence. Caries Res. 2006;40(1):2ś5. doi:10.1159/000088898.
  • 83. Korkut B, Tagtekin DA, Yanıkoglu FC. Early diagnosis of dental caries and new diagnostic methods: QLF, Diagnodent, Electri- cal Conductance and Ultrasonic System. EUDFD. 2011;32:55ś 67.
  • 84. Kim HE, Kim BI. Early caries detection methods ac- cording to the depth of the lesion: An in vitro compar- ison. Photodiagnosis Photodyn Ther. 2018;23:176ś180. doi:10.1016/j.pdpdt.2018.06.014.
  • 85. Gomez J, Zakian C, Salsone S, Pinto S, Taylor A, Pretty I, et al. In vitro performance of different methods in de- tecting occlusal caries lesions. J Dent. 2013;41(2):180ś186. doi:10.1016/j.jdent.2012.11.003.
  • 86. Hellen A, Mandelis A, Finer Y, Amaechi BT. Quantitative rem- ineralization evolution kinetics of artiőcially demineralized human enamel using photothermal radiometry and modu- lated luminescence. J Biophotonics. 2011;4(11-12):788ś804. doi:10.1002/jbio.201100026.
  • 87. Kamburoglu K, Yetimoglu N, Altan H. Characterization of primary and permanent teeth using terahertz spec- troscopy. Dentomaxillofac Radiol. 2014;43(6):20130404. doi:10.1259/dmfr.20130404.
  • 88. Mumcuoglu T, Erdurman FC, Durukan AH. Principles and novel clinical applications of optical coherence tomography. Turk J Ophthalmol. 2008;38(2):168ś75.
  • 89. Terrer E, Panayotov I, Slimani A, Tardivo D, Gillet D, Lev- allois B, et al. Laboratory studies of nonlinear optical sig- nals for caries detection. J Dent Res. 2016;95(5):574ś579. doi:10.1177/0022034516629400.
  • 90. Gallagher R, Demos S, Balooch M, Marshall Jr G, Marshall S. Optical spectroscopy and imaging of the dentinśenamel junction in human third molars. J Biomed Mater Res A. 2003;64(2):372ś377. doi:10.1002/jbm.a.10436.
  • 91. Lin PY, Lyu HC, Hsu CYS, Chang CS, Kao FJ. Imaging car- ious dental tissues with multiphoton ŕuorescence lifetime imaging microscopy. Biomed Opt Express. 2011;2(1):149ś158. doi:10.1364/BOE.2.000149.
  • 92. de Oliveira FF, Ito AS, Bachmann L. Time-resolved ŕuores- cence spectroscopy of white-spot caries in human enamel. Appl Opt. 2010;49(12):2244ś2249. doi:10.1364/AO.49.002244.
  • 93. Zezell DM, Ribeiro AC, Bachmann L, Gomes ASL, Rousseau C, Girkin JM. Characterization of natural carious lesions by ŕuorescence spectroscopy at 405-nm excitation wavelength. J Biomed Opt. 2007;12(6):064013. doi:10.1117/1.2821192.
  • 94. Panayotov I, Terrer E, Salehi H, Tassery H, Yachouh J, Cuisinier FJ, et al. In vitro investigation of ŕuorescence of carious dentin observed with a Soprolife® camera. Clin Oral Investig. 2013;17(3):757ś763. doi:10.1007/s00784-012-0770- 9.
  • 95. Evans JW, Zawadzki RJ, Liu R, Chan JW, Lane SM, Werner JS. Optical coherence tomography and Raman spectroscopy of the ex-vivo retina. J Biophotonics. 2009;2(6-7):398ś406. doi:10.1002/jbio.200910022.
  • 96. Chun-Te Ko A, Hewko MD, Leonardi L, Sowa MG, Dong CC, Williams P, et al. Ex vivo detection and characteriza- tion of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt. 2005;10(3):031118. doi:10.1117/1.1915488.
  • 97. Hill W, Petrou V. Caries detection by diode laser Ra- man spectroscopy. Appl Spectrosc. 2000;54(6):795ś799. doi:10.1366/0003702001950409.
  • 98. Izawa T, Wakaki M. Application of laser Raman spectroscopy to dental diagnosis. In: Lasers in Dentistry XI. vol. 5687. In- ternational Society for Optics and Photonics; 2005. p. 1ś8.
  • 99. Ko ACT, Hewko M, Sowa MG, Dong CC, Cleghorn B. Detection of early dental caries using polarized Raman spectroscopy. Opt Express. 2006;14(1):203ś215. doi:10.1364/opex.14.000203.
  • 100. Krafft C, Sergo V. Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. J Spectrosc. 2006;20(5-6):195ś218.
  • 101. Matousek P, Morris M. Emerging Raman applications and techniques in biomedical and pharmaceutical őelds. Springer Science & Business Media; 2010.
  • 102. Gumus G, Sarioglu B, Gokdel YD. System integration for real- time laser scanning confocal microscope. In: 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE; 2016. p. 2121ś2124.
  • 103. Wong A, Subar PE, Young DA. Dental caries: an update on dental trends and therapy. Adv Pediatr. 2017;64(1):307ś330. doi:10.1016/j.yapd.2017.03.011.
  • 104. Askar H, Schwendicke F, Lausch J, Meyer-Luckel H, Paris S. Modiőed resin inőltration of non-, micro-and cavitated proximal caries lesions in vitro. J Dent. 2018;74:56ś60. doi:10.1016/j.jdent.2018.03.010.
APA AKYILDIZ E, OZALP N (2022). Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. , 38 - 45. 10.52037/eads.2022.0008
Chicago AKYILDIZ Emine,OZALP Nurhan Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. (2022): 38 - 45. 10.52037/eads.2022.0008
MLA AKYILDIZ Emine,OZALP Nurhan Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. , 2022, ss.38 - 45. 10.52037/eads.2022.0008
AMA AKYILDIZ E,OZALP N Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. . 2022; 38 - 45. 10.52037/eads.2022.0008
Vancouver AKYILDIZ E,OZALP N Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. . 2022; 38 - 45. 10.52037/eads.2022.0008
IEEE AKYILDIZ E,OZALP N "Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods." , ss.38 - 45, 2022. 10.52037/eads.2022.0008
ISNAD AKYILDIZ, Emine - OZALP, Nurhan. "Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods". (2022), 38-45. https://doi.org/10.52037/eads.2022.0008
APA AKYILDIZ E, OZALP N (2022). Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. European annals of dental sciences (Online), 49(1), 38 - 45. 10.52037/eads.2022.0008
Chicago AKYILDIZ Emine,OZALP Nurhan Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. European annals of dental sciences (Online) 49, no.1 (2022): 38 - 45. 10.52037/eads.2022.0008
MLA AKYILDIZ Emine,OZALP Nurhan Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. European annals of dental sciences (Online), vol.49, no.1, 2022, ss.38 - 45. 10.52037/eads.2022.0008
AMA AKYILDIZ E,OZALP N Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. European annals of dental sciences (Online). 2022; 49(1): 38 - 45. 10.52037/eads.2022.0008
Vancouver AKYILDIZ E,OZALP N Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. European annals of dental sciences (Online). 2022; 49(1): 38 - 45. 10.52037/eads.2022.0008
IEEE AKYILDIZ E,OZALP N "Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods." European annals of dental sciences (Online), 49, ss.38 - 45, 2022. 10.52037/eads.2022.0008
ISNAD AKYILDIZ, Emine - OZALP, Nurhan. "Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods". European annals of dental sciences (Online) 49/1 (2022), 38-45. https://doi.org/10.52037/eads.2022.0008