Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 675 - 686 Metin Dili: İngilizce DOI: 10.55730/1300-0128.4242 İndeks Tarihi: 28-12-2022

Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile

Öz:
The aim of the present study was to investigate the effects of a combination of crude glycerin and waste sesame seed on the growth performance, rumen fermentation, carcass characteristics, and meat fatty acid profile of lambs. Twenty-four male Karayaka lambs with initial body weights of 26.5 ± 0.53 kg were randomly divided into four groups and raised in individual pens. For 70 days, lambs were fed ad libitum the one of four concentrates: concentrate without CG and WSS (control), concentrate with 10% CG (G), concentrate with 10% WSS (W), and concentrate with 5% CG and 5% WSS (GW). All diets consisted of 85% concentrate and 15% forage (wheat straw). The dietary treatments did not affect dry matter intake, average daily gain, or feed efficiency. The rumen parameters and carcass measurements did not differ among the treatments. Greater levels of linoleic acid, total polyunsaturated fatty acids, and total n-6 fatty acids (p < 0.001) and lesser levels of margaric acid (p = 0.008) were detected in the W diet compared to the other diets. Overall, a combination of CG and WSS did not effectively increase the beneficial fatty acid content of lamb meat. However, both byproducts can partially replace grains as alternative energy sources in lambs’ concentrates up to 10% without affecting growth performance, ruminal fermentation, and carcass characteristics.
Anahtar Kelime: Alternative feeds fattening performance glycerol lamb meat ruminal biohydrogenation oilseed

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Salter A. Dietary fatty acids and cardiovascular disease. Animal 2013; 7 (1): 163-171. https://doi: 10.1017/S1751731111002023.
  • 2. Abel S, Riedel S, Gelderblom W. Dietary PUFA and cancer. Proceedings of the Nutrition Society 2014; 73 (3): 361-367. https://doi.org/10.1017/S0029665114000585.
  • 3. Harfoot C, Hazlewood G. Lipid metabolism in the rumen. In: Hobson PN, Stewart CS (editor). The rumen microbial ecosystem. Elsevier Inc, London;1997. pp. 382-426.
  • 4. Nudda A, Battacone G, Neto OB, Cannas A, Francesconi AHD et al. Feeding strategies to design the fatty acid profile of sheep milk and cheese: Invited review. Revista Brasileira de Zootecnia 2014;43 (8): 445-456. https://doi: 10.1590/S1516- 35982014000800008.
  • 5. Bessa RJB, Portugal P, Mendes I, Santos-Silva J. Effect of lipid supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs fed dehydrated lucerne or concentrate. Livestock Production Science 2005; 96 (2-3): 185-194. https://doi: 10.1016/j.livprodsci.2005.01.017.
  • 6. Peng Y, Brown M, Wu J, Liu Z. Different oilseed supplements alter fatty acid composition of different adipose tissues of adult ewes. Meat Science 2010; 85 (3): 542-549. https://doi: 10.1016/j. meatsci.2010.03.003
  • 7. Manso T, Bodas R, Castro T, Jimeno V, Mantecon A. Animal performance and fatty acid composition of lambs fed with different vegetable oils. Meat Science 2009; 83 (3): 511-516. https://doi: 10.1016/j.meatsci.2009.06.035.
  • 8. Fiorentini G, Messana J, Neto AJ, Sgobi E, Castagnino P et al. Performance and meat quality of Nellore bulls fed crude glycerin combined with soybean oil. Animal Feed Science and Technology 2018; 241: 45-54. https://doi: 10.1016/j. anifeedsci.2018.04.013.
  • 9. Majewska MP, Miltko R, Krawczyńska A, Bełżecki G, Kowalik B. Rapeseed and linseed oil supplementation affects hydrolytic activities in the rumen of sheep. Livestock Science 2020; 240: 104175. https://doi: 10.1016/j.livsci.2020.104175.
  • 10. Fiorentini G, Carvalho IP, Messana JD, Canesin RC, Castagnino PS et al. Effect of lipid sources with different fatty acid profiles on intake, nutrient digestion and ruminal fermentation of feedlot nellore steers. Asian-Australasian Journal of Animal Sciences 2015; 28 (11): 1583-1591. https://doi: 10.5713/ajas.15.0130.
  • 11. Krueger N, Anderson R, Tedeschi L, Callaway T, Edrington T et al. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro. Bioresource Technology 2010; 101 (21): 8469-8472. https://doi: 10.1016/j.biortech.2010.06.010
  • 12. Edwards H, Anderson R, Miller R, Taylor T, Hardin M et al. Glycerol inhibition of ruminal lipolysis in vitro. Journal of Dairy Science 2012; 95 (9): 5176-5181. https://doi: 10.3168/ jds.2011-5236.
  • 13. Granja-Salcedo YT, de Souza VC, Dias AVL, Gomez-Insuasti AS, Messana JD et al. Diet containing glycerine and soybean oil can reduce ruminal biohydrogenation in Nellore steers. Animal Feed Science and Technology 2017; 225: 195-204. https://doi: 10.1016/j.anifeedsci.2017.01.021.
  • 14. Monteiro MR, Kugelmeier CL, Pinheiro RS, Batalha MO, Da Silva César A. Glycerol from biodiesel production: Technological paths for sustainability. Renewable & Sustainable Energy Reviews 2018; 88: 109-122. https://doi: 10.1016/j. rser.2018.02.019.
  • 15. OECD/FAO. OECD and Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2020-2029. Paris, France: FAO, Rome/OECD Publishing; 2020. https://doi.org/10.1787/1112c23b-en.
  • 16. Bölükbaş B and Kaya İ. Utilization of Crude Glycerin in Ruminant Diets. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 2022; 19 (1): 74-82. https://doi: 10.32707/ercivet.1084972.
  • 17. Sethuraman N, Varman KS, Venkatakrishnan R, Thamizhvel R. An experimental investigation of crude glycerol into useful products by using IC engine in dual fuel mode. Materials Today 2021; 44 (5): 3914-3918. https://doi: 10.1016/j. matpr.2021.02.160.
  • 18. Costa CA, de Andrade GP, do Vale Maciel M, de Lima DM, Cardoso DB et al. Meat quality of lambs fed crude glycerin as a replacement for corn. Small Ruminant Research 2020; 192: 106245. https://doi: 10.1016/j.smallrumres.2020.106245.
  • 19. Almeida MTC, Ezequiel JMB, Paschoaloto JR, Perez HL, de Carvalho VB et al. Effects of high concentrations of crude glycerin in diets for feedlot lambs: feeding behaviour, growth performance, carcass and non-carcass traits. Animal Production Science 2018; 58: 1271-1278. https://doi: 10.1071/ AN16628.
  • 20. Kennelly JJ. The fatty acid composition of milk fat as influenced by feeding oilseeds. Animal Feed Science and Technology 1996; 60 (3-4): 137-152. https://doi: 10.1016/0377-8401(96)00973-X.
  • 21. Gandra JR, Takiya CS, Oliveira ERD, Paiva PGD, Gandra ÉRDS et al. Nutrient digestion, microbial protein synthesis, and blood metabolites of Jersey heifers fed chitosan and whole raw soybeans. Revista Brasileira de Zootecnia 2016; 45 (3): 130-137. https://doi: 10.1590/S1806-92902016000300007
  • 22. Facciolongo A, Lestingi A, Colonna M, Nicastro F, De Marzo D et al. Effect of diet lipid source (linseed vs. soybean) and sex on performance, meat quality and intramuscular fatty acid composition in fattening lambs. Small Ruminant Research 2018; 159: 11-17. https://doi: 10.1016/j.smallrumres.2017.11.015.
  • 23. Vasta V, Nudda A, Cannas A, Lanza M, Priolo A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Animal Feed Science and Technology 2008; 147 (1-3): 223-246. https://doi: 10.1016/j. anifeedsci.2007.09.020.
  • 24. Elleuch M, Besbes S, Roiseux O, Blecker C, Attia H. Quality characteristics of sesame seeds and by-products. Food Chemistry 2007; 103 (2): 641-650. doi: 10.1016/j. foodchem.2006.09.008
  • 25. Kaya I, Bolukbas B, Aykut U, Ugurlu M, Muruz H et al. The effects of adding waste sesame seeds to diets on performance, carcass characteristics, and meat fatty acid composition of Karayaka lambs. Ankara Üniversitesi Veteriner Fakültesi Dergisi 2022; 69 (2): 183-189. https://doi: 10.33988/ auvfd.843049.
  • 26. NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. National Academic Press: Washington, DC. 2007.
  • 27. Markham R. A steam distillation apparatus suitable for micro- Kjeldahl analysis. Biochemical Journal 1942; 36 (10-12): 790. https://doi: 10.1042/bj0360790.
  • 28. Erwin E, Marco G, Emery E. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science 1961; 44: 1768-1771. https://doi: 10.3168/jds. S0022-0302(61)89956-6.
  • 29. TSE. Turkish Standards Institute. Butchery animals-rules for slaughtering and carcass preparation. 1987; TS 5273, Ankara, Turkey.
  • 30. AOAC. Official Method of Analysis of the Association of Official Analytical Chemists International 16th ed. Arlington, VA, USA. Methods 923.03, 925.09, 991.20, 920.29, 973.18. 1995.
  • 31. Mertens DR. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC international 2002; 85 (6): 1217-1240. https://doi: 10.1093/jaoac/85.6.1217.
  • 32. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 1959; 37 (8): 911-917. https://doi: 10.1139/o59-099.
  • 33. UNE-EN ISO 5509. Aceites y grasas de origen vegetal. Preparación de ésteres metílicos de ácidos grasos. In Asociación Española de Normalización y Certificación (AENOR) Inc. (Ed.), Depósito legal M 4510. 2001.
  • 34. Parvar R, Ghoorchi T, Shargh MS. Influence of dietary oils on performance, blood metabolites, purine derivatives, cellulase activity and muscle fatty acid composition in fattening lambs. Small Ruminant Research 2017; 150: 22-29. https://doi: 10.1016/j.smallrumres.2017.03.004.
  • 35. Ghafari H, Rezaeian M, Sharifi S, Khadem A, Afzalzadeh A. Effects of dietary sesame oil on growth performance and fatty acid composition of muscle and tail fat in fattening Chaal lambs. Animal Feed Science and Technology 2016; 220: 216-225. https://doi: 10.1016/j.anifeedsci.2016.08.006.
  • 36. Granja-Salcedo YT, Messana JD, de Souza VC, Dias AVL, Kishi LT et al. Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. British Journal of Nutrition 2017; 118 (9): 651-660. https://doi: 10.1017/ S0007114517002689.
  • 37. Gomez-Insuasti AS, Granja-Salcedo YT, Rossi LG, Vieira BR, Berchielli TT. Effect of soybean oil availabilities on rumen biohydrogenation and duodenal flow of fatty acids in beef cattle fedadietwithcrudeglycerine.ArchivesofAnimalNutrition 2018; 72 (4): 308-320. https://doi: 10.1080/1745039X.2018.1492805.
  • 38. Musselman A, Van Emon M, Gunn P, Rusk C, Neary M et al. Effects of crude glycerin on feedlot performance and carcass characteristics of market lambs. American Society of Animal Sciences 2008; 59: 353-355.
  • 39. Gunn P, Schultz A, Van Emon M, Neary M, Lemenager R et al. Effects of elevated crude glycerin concentrations on feedlot performance, carcass characteristics, and serum metabolite and hormone concentrations in finishing ewe and wether lambs. The Professional Animal Scientist 2010; 26 (3): 298-306. https://doi: 10.15232/S1080-7446(15)30597-0.
  • 40. Russell JB, Dombrowski D. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Applied and Environmental Microbiology 1980; 39 (3): 604-610. https://doi: 10.1128/AEM.39.3.604-610.1980.
  • 41. Granja-Salcedo YT, Júnior CSR, de Jesus RB, Gomez-Insuasti AS, Rivera AR et al. Effect of different levels of concentrate on ruminal microorganisms and rumen fermentation in Nellore steers. Archives of Animal Nutrition 2016; 70 (1): 17-32. https:// doi: 10.1080/1745039X.2015.1117562.
  • 42. Van Cleef EH, Almeida MTC, Perez HL, Paschoaloto JR, Filho ESC et al. Effects of partial or total replacement of corn cracked grain with high concentrations of crude glycerin on rumen metabolism of crossbred sheep. Small Ruminant Research 2018; 159: 45-51. https://doi: 10.1016/j.smallrumres.2017.12.011.
  • 43. Preston T. Better utilization of crop residues and by-products in animal feeding: research guidelines. 2. A practical manual for research workers. FAO Animal Production and Health Paper 1986; 50: 154-154.
  • 44. Firkins J, Yu Z, Morrison M. Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. Journal of Dairy Science 2007; 90 (Supplement): E1-E16. https://doi:10.3168/jds.2006-518.
  • 45. Jalc D, Ceresnakova Z. Effect of plant oils and malate on rumen fermentation in vitro. Czech Journal of Animal Science 2002; 47 (3): 106-107.
  • 46. Li D, Wang J, Liu L, Liu K, Yu P et al. Effect of supplementing malic acid and unsaturated fatty acid on rumen fermentation and functional microbe in vitro. Journal of Agricultural Biotechnology 2009; 17 (6): 1013-1019.
  • 47. Argüello A, Castro N, Capote J, Solomon M. The Influence of Artificial Rearing and Live Weight at Slaughter on Kid Carcass Characteristics. Journal of Animal Veterinary Advances 2007; 6 (1): 20-25.
  • 48. Rizzi L, Simioli M, Sardi L, Monetti PG. Carcass quality, meat chemical and fatty acid composition of lambs fed diets containing extruded soybeans and sunflower seeds. Animal Feed Science and Technology 2002; 97 (1-2): 103-114. https:// doi: 10.1016/S0377-8401(01)00344-3.
  • 49. Carvalho V, Leite R, Almeida M, Paschoaloto J, Carvalho E et al. Carcass characteristics and meat quality of lambs fed high concentrations of crude glycerin in low-starch diets. Meat Science 2015; 110: 285-292. https://doi: 10.1016/j. meatsci.2015.08.001.
  • 50. Olfaz M, Ocak N, Erener G, Cam M, Garipoglu A. Growth, carcass and meat characteristics of Karayaka growing rams fed sugar beet pulp, partially substituting for grass hay as forage. Meat Science 2005; 70: 7-14. https://doi: 10.1016/j. meatsci.2004.11.015.
  • 51. Balci F, Karakaş E. The effect of different slaughter weights on the fattening performance, slaughter and carcass characteristics of male Karayaka lambs. Turkish Journal of Veterinary and Animal Sciences 2007; 31 (1): 25-31.
  • 52. Papi N, Mostafa-Tehrani A, Amanlou H, Memarian M. Effects of dietary forage-to-concentrate ratios on performance and carcass characteristics of growing fat-tailed lambs. Animal Feed Science and Technology 2011; 163 (2-4): 93-98. https:// doi: 10.1016/j.anifeedsci.2010.10.010.
  • 53. Jenkins B, West JA, Koulman A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease. Molecules 2015; 20 (2): 2425-2444. https://doi: 10.3390/ molecules20022425.
  • 54. Ezequiel J, Sancanari J, Neto OM, Da Silva Z, Almeida M et al. Effects of high concentrations of dietary crude glycerin on dairy cow productivity and milk quality. Journal of Dairy Science 2015; 98 (11): 8009-8017. https://doi:10.3168/jds.2015- 9448.
  • 55. De Almeida Rego FC, Françozo MC, Ludovico A, de Castro FAB, Zundt M et al. Fatty acid profile and lambs’ meat quality fed with different levels of crude glycerin replacing corn. Semina: Ciências Agrárias 2017; 38 (4): 2051-2064. https://doi: 10.5433/1679-0359.2017v38n4p2051.
  • 56. Wood J, Enser M, Fisher A, Nute G, Sheard P et al. Fat deposition, fatty acid composition and meat quality: A review. Meat Science. 2008; 78 (4): 343-358. https://doi.org/10.1016/j. meatsci.2007.07.019.
  • 57. Doreau M, Ferlay A. Digestion and utilisation of fatty acids by ruminants. Animal Feed Science and Technology 1994; 45 (3- 4): 379-396. https://doi: 10.1016/0377-8401(94)90039-59.
  • 58. Borghi TH, Silva Sobrinho AGD, Zeola NMBL, Almeida FAD., Cirne LGA et al. Dietary glycerin does not affect meat quality of Ile de France lambs. Revista Brasileira de Zootecnia 2016; 45 (9): 554-562. https://doi: 10.1590/s1806-92902016000900008.
  • 59. World Health Organization (WHO). Diet, nutrition and the prevention of chronic diseases. Report of a joint WHO/FAO expert consultation,Technical Report series No. 916. Geneva, Italy: FAO publishing; 2003.
APA Bölükbaş B, KAYA I (2022). Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. , 675 - 686. 10.55730/1300-0128.4242
Chicago Bölükbaş Bora,KAYA ISMAIL Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. (2022): 675 - 686. 10.55730/1300-0128.4242
MLA Bölükbaş Bora,KAYA ISMAIL Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. , 2022, ss.675 - 686. 10.55730/1300-0128.4242
AMA Bölükbaş B,KAYA I Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. . 2022; 675 - 686. 10.55730/1300-0128.4242
Vancouver Bölükbaş B,KAYA I Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. . 2022; 675 - 686. 10.55730/1300-0128.4242
IEEE Bölükbaş B,KAYA I "Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile." , ss.675 - 686, 2022. 10.55730/1300-0128.4242
ISNAD Bölükbaş, Bora - KAYA, ISMAIL. "Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile". (2022), 675-686. https://doi.org/10.55730/1300-0128.4242
APA Bölükbaş B, KAYA I (2022). Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. Turkish Journal of Veterinary and Animal Sciences, 46(5), 675 - 686. 10.55730/1300-0128.4242
Chicago Bölükbaş Bora,KAYA ISMAIL Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. Turkish Journal of Veterinary and Animal Sciences 46, no.5 (2022): 675 - 686. 10.55730/1300-0128.4242
MLA Bölükbaş Bora,KAYA ISMAIL Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. Turkish Journal of Veterinary and Animal Sciences, vol.46, no.5, 2022, ss.675 - 686. 10.55730/1300-0128.4242
AMA Bölükbaş B,KAYA I Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. Turkish Journal of Veterinary and Animal Sciences. 2022; 46(5): 675 - 686. 10.55730/1300-0128.4242
Vancouver Bölükbaş B,KAYA I Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile. Turkish Journal of Veterinary and Animal Sciences. 2022; 46(5): 675 - 686. 10.55730/1300-0128.4242
IEEE Bölükbaş B,KAYA I "Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile." Turkish Journal of Veterinary and Animal Sciences, 46, ss.675 - 686, 2022. 10.55730/1300-0128.4242
ISNAD Bölükbaş, Bora - KAYA, ISMAIL. "Crude glycerin and waste sesame seed in the diets of growing lambs: impacts on growth performance, nutrient digestibility, ruminal fermentation, carcass characteristics, and meat fatty acid profile". Turkish Journal of Veterinary and Animal Sciences 46/5 (2022), 675-686. https://doi.org/10.55730/1300-0128.4242