Yıl: 2022 Cilt: 30 Sayı: 3 Sayfa Aralığı: 389 - 396 Metin Dili: İngilizce DOI: 10.31796/ogummf.1066433 İndeks Tarihi: 05-01-2023

INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Öz:
ecently increasing attention has been paid to the development of highly sensitive and selective electrochemical sensors for accurate and cost-effective detection in various fields. In this study, gold nanoparticles (AuNPs) were electro-deposited onto screen printed gold electrode (SPGE) surfaces at different times to determine the optimum modification conditions. Determining the optimum modification for the SPGE surface, AuNP modification under −0.3 V potential with 2 mM HAuCl4 (in 0.5 M H2SO4) solution were investigated. In this case, for the optimum AuNP modification, electrochemical impedance spectroscopy (EIS) analysis was performed at the following deposition times: 30, 60, 90, 120, and 150 s. As a result of modeling the Nyquist graph obtained in the range of 10 kHz to 0.1 Hz with the EIS analysis based on the equivalent circuit model, the outcomes for each modification time were analyzed. After the modification with AuNPs, scanning electron microscope (SEM) images of the SPGE surfaces were discussed. As a result, the optimum deposition time was determined as 90 s by the analysis. This study can be used for electrochemical investigation and target detection in complex media in terms of AuNPs on SPGE surfaces with a detailed perspective for nanoparticle deposition.
Anahtar Kelime: screen printed electrode gold Nano particle Electrodeposition Empedance spectrocopy

INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Öz:
Recently increasing attention has been paid to the development of highly sensitive and selective electrochemical sensors for accurate and cost-effective detection in various fields. In this study, gold nanoparticles (AuNPs) were electro-deposited onto screen printed gold electrode (SPGE) surfaces at different times to determine the optimum modification conditions. Determining the optimum modification for the SPGE surface, AuNP modification under −0.3 V potential with 2 mM HAuCl4 (in 0.5 M H2SO4) solution were investigated. In this case, for the optimum AuNP modification, electrochemical impedance spectroscopy (EIS) analysis was performed at the following deposition times: 30, 60, 90, 120, and 150 s. As a result of modeling the Nyquist graph obtained in the range of 10 kHz to 0.1 Hz with the EIS analysis based on the equivalent circuit model, the outcomes for each modification time were analyzed. After the modification with AuNPs, scanning electron microscope (SEM) images of the SPGE surfaces were discussed. As a result, the optimum deposition time was determined as 90 s by the analysis. This study can be used for electrochemical investigation and target detection in complex media in terms of AuNPs on SPGE surfaces with a detailed perspective for nanoparticle deposition.
Anahtar Kelime: Ekran baskılı elektrot Altın nanoparçacık Elektrobiriktirme Empedans spektroskopisi

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Apetrei, I. M., & Apetrei, C. (2018). A modified nanostructured graphene-gold nanoparticle carbon screen-printed electrode for the sensitive voltammetric detection of rutin. Measurement 114, 37–43. doi: https://doi.org/10.1016/j.measurement.2017.09.0 20
  • Avci, H., Anıl H., Koc, Y., Moralı, U., & Erol, S. (2019). Developing biosensors for food safety analysis. 4th International Congress on Biosensors, Çanakkale, Turkey.
  • Avci, H., Güzel, F. D., Erol, S., & Akpek, A. (2018). Recent advances in organ-on-a-chip technologies and future challenges: a review. Turkish Journal of Chemistry, 42(3), 587-610. doi: https://doi.org/10.3906/kim-1611-35
  • Borah, D., Bharali, D. K., & Morris, M. A. (2017). Lignocellulosic-based activated carbon prepared by a chemical impregnation method as electrode materials for double layer capacitor. Advances in Chemical Engineering and Science, 7(02), 175. doi: https://doi.org/10.4236/aces.2017.72013
  • Charoenkitamorn, K., Chailapakul, O., & Siangproh, W. (2015). Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta, 132: 416-423. doi: https://doi.org/10.1016/j.talanta.2014.09.020
  • Couto, R. A. S., Lima, J. L. F. C., & Quinaz, M. B., (2016). Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta, 146, 801-814. doi: https://doi.org/10.1016/j.talanta.2015.06.011
  • Galeotti, M., Giammanco, C., Cinà, L., Cordiner, S., & Di Carlo, A., (2015). Synthetic methods for the evaluation of the State of Health (SOH) of nickel- metal hydride (NiMH) batteries. Energ. Convers. Manage, 92,1-9. doi: https://doi.org/10.1016/j.enconman.2014.12.040
  • Garbioglu, D., Demir, N., Ozel, C., Avci, H., & Dincer, M. (2021). Determination of therapeutic agents efficiencies of microsatellite instability high colon cancer cells in post metastatic liver biochip modeling. The FASEB Journal, 35(9), e21834. doi: https://doi.org/10.1096/fj.202100333R
  • Güzel, F. D., Ghorbanpoor, H., Dizaji, A. N., Akcakoca, I., Ozturk, Y., Kocagoz, T., Corrigan, D., & Avci, H. (2021). Label free molecular detection of antibiotic susceptibility for Mycobacterium smegmatis using a low cost electrode format. Biotechnology and Applied Biochemistry, 68(6), 1159-1166. doi: https://doi.org/10.1002/bab.2037
  • Huang, D., Liao, F., Molesa, S., Redinger, D., & Subramanian, V. (2003). Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. Journal of the electrochemical society, 150(7), G412. doi: https://doi.org/10.1149/1.1582466
  • Iskandar, F., Abdillah, O. B., Stavila, E., & Aimon, A. H., (2018). The influence of copper addition on the electrical conductivity and charge transfer resistance of reduced graphene oxide (rGO). New Journal of Chemistry, 42(19), 16362-16371. doi: https://doi.org/10.1039/C8NJ03614D
  • Jorcin, J.-B., Orazem, M. E., Pébère, N., & Tribollet, B. (2006). CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 51(8- 9), 1473–1479. doi: https://doi.org/10.1016/j.electacta.2005.02.128
  • Koc, Y., Moralı, U., Erol, S., & Avci, H. (2019). Investigation of immobilization process of screen printed carbon electrode for an advanced biosensor a detailed characterization. IV. International Scientific and Vocational Studies Congress - Engineering, Ankara, Turkey.
  • Koç, Y., Moralı, U., Erol, S., & Avci, H. (2021a). Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy. Turkish Journal of Chemistry, 45(6). doi: http://doi.org/10.3906/kim-2105-55
  • Koç, Y., Moralı, U., Erol, S., & Avci, H. (2021b). Electrochemical investigation of gold based screen printed electrodes: an application for a seafood toxin detection. Electroanalysis, 33(4), 1033-1048. doi: https://doi.org/10.1002/elan.202060433
  • Lasia, A. (2002). Applications of electrochemical impedance spectroscopy to hydrogen adsorption, evolution and absorption into metals. In Modern aspects of electrochemistry (pp. 1-49). Springer, Boston, MA. doi: https://doi.org/10.1007/0- 306-47604-5_1
  • Merli, D., Ferrari, C., Cabrini, E., Dacarro, G., Pallavicini, P., & Profumo, A. (2016). A gold nanoparticle chemically modified gold electrode for the determination of surfactants. RSC advances, 6(108), 106500-106507. doi: https://doi.org/10.1039/C6RA22223D
  • Morali, U. (2020). Synergistic influence of charge conditions on electrochemical impedance response of LiNiMnCoO2|C coin cells - Complementary statistical analysis. Journal of Energy Storage, 32, 101809. doi: https://doi.org/10.1016/j.est.2020.101809
  • Orazem, M. E., & Tribollet, B. (2008). Electrochemical impedance spectroscopy. New Jersey, 383-389.
  • Özel, C., Koç, Y., Topal, A., Ebrahimi, A., Şengel, T., Ghorbanpoor, H., Doğan Guzel, F., Uysal, O., Eker Sarıboyacı, A. & Avcı, H. (2021). Investigation of 3d culture of human adipose tissue-derived mesenchymal stem cells in a microfluidic platform. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 22(8th ULPAS-Special Issue 2021), 85- 97. doi: https://doi.org/10.18038/estubtda.983881
  • Samie, H. A., & Arvand, M., (2020). Label-free electrochemical aptasensor for progesterone detection in biological fluids, Bioelectrochemistry, 133, 107489. doi: https://doi.org/10.1016/j.bioelechem.2020.10748 9
  • Sanzo, G., Taurino, I., Antiochia, R., Gorton, L., Favero, G., Mazzei, F., Micheli, & Carrara, S. (2016). Bubble electrodeposition of gold porous nanocorals for the enzymatic and non-enzymatic detection of glucose. Bioelectrochemistry, 112, 125-131. doi: https://doi.org/10.1016/j.bioelechem.2016.02.01 2
  • Shaegh, S. A. M., Pourmand, A., Nabavinia, M., Avci, H., Tamayol, A., Mostafalu, P., & Zhang, Y. S. (2018). Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sensors and Actuators B: Chemical, 255, 100-109. doi: https://doi.org/10.1016/j.snb.2017.07.138
  • Shin, S. R., Kilic, T., Zhang, Y. S., Avci, H., Hu, N., Kim, D., ... & Khademhosseini, A. (2017). Label Free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Advanced Science, 4(5), 1600522. doi: https://doi.org/10.1002/advs.201600522
  • Shin, S. R., Zhang, Y. S., Kim, D. J., Manbohi, A., Avci, H., Silvestri, A., & Khademhosseini, A. (2016). Aptamer- based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Analytical chemistry, 88(20), 10019- 10027. doi: https://doi.org/10.1021/acs.analchem.6b0202
  • Singh, M., Jaiswal, N., Tiwari, I., Foster, C. W., & Banks, C. E. (2018). A reduced graphene oxide-cyclodextrin- platinum nanocomposite modified screen printed electrode for the detection of cysteine. J. Electroanal. Chem. 829, 230–240. doi: https://doi.org/10.1016/j.jelechem.2018.09.018
  • Stine, K. J. (2019). Biosensor Applications of Electrodeposited Nanostructures. Applied Sciences, 9(4),797. doi: https://doi.org/10.3390/app9040797
  • Taurino, I., Sanzò, G., Antiochia, R., Tortolini, C., Mazzei, F., Favero, G., Michelii, & Carrara, S. (2016). Recent advances in third generation biosensors based on Au and Pt nanostructured electrodes. TrAC Trends in Analytical Chemistry, 79, 151-159. doi: https://doi.org/10.1016/j.trac.2016.01.020
  • Wan, H., Sun, Q., Li, H., Sun, F., Hu, N., & Wang, P. (2015). Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sensors and Actuators B: Chemical, 209, 336-342. doi: https://doi.org/10.1016/j.snb.2014.11.127
  • Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., & Orazem M. (2021). Electrochemical impedance spectroscopy. Nat Rev Methods Primers, 1, 41. doi: https://doi.org/10.1038/s43586-021-00039-w
  • Wolff, N., Harting, N., Heinrich, M., Röder, F., & Krewer, U. (2018). Nonlinear frequency response analysis on lithium-ion batteries: a model-based assessment. Electrochimica Acta, 260, 614-622. doi: https://doi.org/10.1016/j.electacta.2017.12.097
  • Zeng, Y., Zhu, Z., Du, D., & Lin, Y. (2016). Nanomaterial- based electrochemical biosensors for food safety. Journal of Electroanalytical Chemistry, 781, 147-154. doi: https://doi.org/10.1016/j.jelechem.2016.10.030
  • Zhang, Y. S., Aleman, J., Shin, S. R., Kilic, T., Kim, D., Mousavi Shaegh, S. A., & Khademhosseini, A. (2017). Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proceedings of the National Academy of Sciences, 114(12), E2293-E2302. doi: https://doi.org/10.1073/pnas.161290611
  • Zhang, Y., Jiang, X., Zhang, J., Zhang, H., & Li, Y. (2019). Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosensors and Bioelectronics, 130, 315-321. doi: https://doi.org/10.1016/j.bios.2019.01.043
  • Zhu, W., Zhu, A., & Shu, Y. (2022). GNP/CNT nanocomposite coated screen-printed electrode for point-of-care testing of dopamine in human serum. Progress in Organic Coatings, 170, 106983. doi: https://doi.org/10.1016/j.porgcoat.2022.106983
APA Koç Y, Avci H (2022). INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. , 389 - 396. 10.31796/ogummf.1066433
Chicago Koç Yücel,Avci Huseyin INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. (2022): 389 - 396. 10.31796/ogummf.1066433
MLA Koç Yücel,Avci Huseyin INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. , 2022, ss.389 - 396. 10.31796/ogummf.1066433
AMA Koç Y,Avci H INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. . 2022; 389 - 396. 10.31796/ogummf.1066433
Vancouver Koç Y,Avci H INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. . 2022; 389 - 396. 10.31796/ogummf.1066433
IEEE Koç Y,Avci H "INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY." , ss.389 - 396, 2022. 10.31796/ogummf.1066433
ISNAD Koç, Yücel - Avci, Huseyin. "INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY". (2022), 389-396. https://doi.org/10.31796/ogummf.1066433
APA Koç Y, Avci H (2022). INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), 30(3), 389 - 396. 10.31796/ogummf.1066433
Chicago Koç Yücel,Avci Huseyin INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online) 30, no.3 (2022): 389 - 396. 10.31796/ogummf.1066433
MLA Koç Yücel,Avci Huseyin INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), vol.30, no.3, 2022, ss.389 - 396. 10.31796/ogummf.1066433
AMA Koç Y,Avci H INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online). 2022; 30(3): 389 - 396. 10.31796/ogummf.1066433
Vancouver Koç Y,Avci H INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online). 2022; 30(3): 389 - 396. 10.31796/ogummf.1066433
IEEE Koç Y,Avci H "INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY." Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), 30, ss.389 - 396, 2022. 10.31796/ogummf.1066433
ISNAD Koç, Yücel - Avci, Huseyin. "INVESTIGATION OF GOLD NANOPARTICLE MODIFICATION ON SCREEN PRINTED GOLD ELECTRODE BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY". Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online) 30/3 (2022), 389-396. https://doi.org/10.31796/ogummf.1066433