Yıl: 2022 Cilt: 10 Sayı: 12 Sayfa Aralığı: 2560 - 2570 Metin Dili: İngilizce DOI: 10.24925/turjaf.v10i12.2560-2570.5653 İndeks Tarihi: 23-05-2023

The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions

Öz:
Salinity often increases osmotic stress, reducing plant water uptake and inhibiting the absorption of nutrients and minerals. This imbalance situation causes physiological, biochemical disorders, and nutrient deficiencies in plants. In this study, the effects of biochar application on the physiological properties, nutrient contents and antioxidant enzyme activities of lettuce were investigated under saline irrigation water conditions. For this purpose, four different biochar doses and different irrigation water salinity levels were applied to the lettuce plant. In the study, biochar application under salt stress conditions decreased the Na, Fe, Zn content and antioxidant enzyme activity of the plant. Leaf relative water content, chlorophyll content (SPAD) and some nutrients (Ca, K, Mg, P, Cu and Mn) also increased. Therefore, biochar applied under salt irrigated water conditions offers good potential to reduce the severity of plant exposure to salinity stress. In addition, the biochar amendment helped the plant uptake of nutrients.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adhikari ND, Simko I, Mou B. 2019. Phenomic and physiological analysis of salinity effects on lettuce. Sensors, 19(21): 4814. https://doi.org/10.3390/s19214814
  • Afzai U, Khan I, Chattha MU, Maqbool R, Chattha MB, Naz A, Hashem M, Alamri S, Alhaithloul HAS, Hassan S, Bhatti MA, Hassan MU, Qari SH. 2022. Organic amendments mitigate salinity induced toxic effects in maize by modulating antioxidant defense system, photosynthetic pigments and ionic homeostasis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2): 12735-12735. https://doi.org/10.15835/ nbha50212735
  • Akgül H, Mohammed FS, Kına E, Uysal İ, Sevindik M, Doğan M. 2022. Total Antioxidant and Oxidant Status and DPPH Free radical activity of Euphorbia eriophora. Turkish Journal of Agriculture-Food Science and Technology, 10(2): 272-275.
  • Akhtar SS, Li G, Andersen MN, Liu F. 2014. Biochar Enhances Yield and Quality of Tomato under Reduced Irrigation. Agricultural Water Management, 138: 37–44. https://doi.org/10.1016/j.agwat.2014.02.016
  • Ashraf M, Iqbal M, Hussain I, Rasheed R. 2015. Physiological and biochemical approaches for salinity tolerance. In: Managing Salt Tolerance in Plants: Molecular and Genomic Perspectives, 79‒114. Wani, S.H. and M.A. Hussain (eds.). CRC Press, Boca Raton, Florida, USA
  • Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M. 2018. Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry, 123: 268–280. https://doi.org/10.1016/ j.plaphy.2017.12.023
  • Aslam MM, Raja S, Saeed S, Farhat F, Tariq A, Rai HM, Javaid A, Shahzadi I, Asim M, Zulfigar S, Siddiqui A, Iqbal R. 2022. Revisiting the Crucial Role of Reactive Oxygen Species and Antioxidant Defense in Plant Under Abiotic Stress. In Antioxidant Defense in Plants. Springer, Singapore. 397-419. doi: 10.1007/978-981-16-7981-0_18
  • Bolat İ, Kara Ö. 2017. Plant nutrients: Sources, functions, deficiencies and excesses. Journal of Bartın Faculty of Forestry (in Turkish), 19(1): 218-228.
  • Bano A, Gupta A, Rai S, Fatima T, Sharma S, Pathak N. 2021. Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. Plant Stress Physiology—Perspectives in Agriculture, 1-18.
  • Cakmakci T, Sahin U. 2022. Yield, Physiological Responses and Irrigation Water Productivity of Capia Pepper (Capsicum annuum L.) at Deficit Irrigation and Different Biochar Levels. Gesunde Pflanzen, https://doi.org/10.1007/ s10343-022-00703-5
  • Cooper J, Greenberg I, Ludwig B, Hippich L, Fischer D, Glaser B, Kaiser M. 2020. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems and Environment, 295:106882. https://doi.org/10.1016/j.agee.20 20.106882
  • Çakmak I, Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98: 1222-1227. https://doi.org/10. 1104/pp.98.4.1222
  • Çakmakci T, Çakmakci Ö, Şensoy S, Şahin Ü. 2021. The effect of biochar application on some physical properties of pepper (Capsicum annuum L.) in deficit irrigation conditions. In Vth International Eurasion Agriculture and Natural Sciences Congress, Proceeding Book (pp. 38-44).
  • Das K, Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2:53. https://doi.org/10.3389/fenvs.2014.00053
  • Das SK, Patra JK, Thatoi H. 2016. Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. International Review of Hydrobiology, 101(1-2): 3-19. https://doi.org/10.1002/iroh.201401744
  • Duncan DB. 1955. Multiple range and multiple F test. Biometrics, 11(1): 1-42.
  • Edenborn SL, Edenborn HM, Krynock RM, Haug KZ. 2015. Influence of biochar application methods on the phytostabilization of a hydrophobic soil contaminated with lead and acid tar. Journal of Environmental Management, 150: 226-234. https://doi.org/10.1016/j.jenvman.2014.11.023
  • El-Hendawy S, Al-Suhaibani N, Dewir YH, Elsayed S, Alotaibi M, Hassan W, Refay Y, Tahir MU. 2019. Ability of Modified Spectral Reflectance Indices for Estimating Growth and Photosynthetic Efficiency of Wheat under Saline Field Conditions. Agronomy, 9(35) https://doi.org/10.3390/ agronomy9010035
  • Elshaikh NA, She D. 2018. Decreasing the salt leaching fraction and enhancing water-use efficiency for okra using biochar amendments. Communications in Soil Science and Plant Analysis, 49(2): 225-236. https://doi.org/10.1080/00103624. 2017.1421657
  • Farhangi-Abriz S, Torabian S. 2018. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis, 74(3): 215-223. https://doi.org/10.1007/ s13199-017-0509-0
  • Farhangi-Abriz S, Torabian S, Qin R, Noulas C, Lu Y, Gao S. 2021. Biochar effects on yield of cereal and legume crops using meta-analysis. Science of the Total Environment, 775: 145869. https://doi.org/10.1016/j.scitotenv.2021.145869
  • Garrido Y, Tudela JA, Marín A, Mestre T, Martínez V, Gil MI. 2014. Physiological, phytochemical and structural changes of multi leaf lettuce caused by salt stress. Journal of the Science of Food and Agriculture, 94(8): 1592-1599. https://doi.org/ 10.1002/jsfa.6462
  • Gharib H, Hafez E, Sabagh El A. 2016. Optimized potential of utilization efficiency and productivity in wheat by integrated chemical nitrogen fertilization and stimulative compounds. Cercet ri Agronomice n Moldova, 49: 5–20. doi: 10.1515/cerce-2016-0011
  • Guzel S, Odun UC, Cakmakci T, Cakmakci O, Sahin U. 2018. The effect of cucumber (Cucumis sativus) cultivation in aquaponic and hydroponic systems on plant nutrient elements and antioxidant enzyme activity. Fresenius Environmental Bulletin, 27(1): 553-558.
  • Gündoğdu M, Kuru S, Geçer MK, Kıpçak S, Çakmakçı Ö. 2019. Çilek yapraklarının antioksidan enzim aktiviteleri üzerine farklı hormon uygulamalarının etkisi. Yüzüncü Yıl University Journal of Agricultural Sciences, 29(2): 225-232.
  • Haider G, Steens D, Moser G, Müller C, Kammann CI. 2017. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agriculture Ecosystems and Environment, 237: 80–94. https://doi.org/10.1016/j.agee.2016.12.019
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1): 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  • Inal A, Gunes A, Sahin O, Taskin MB, Kaya EC. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management, 31(1):106-113. https://doi.org/10.1111/ sum.12162
  • Jebara S, Jebara M, Limam F, Aouani ME. 2005. Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 162(8): 929-936. https://doi.org/10.1016/j.jplph. 2004.10.005
  • Kanwal S, Ilyas N, Shabir S, Saeed M, Gul R, Zahoor M, Batool N, Mazhar R. 2018. Application of Biochar in Mitigation of Negative Effects of Salinity Stress in Wheat (Triticum Aestivum L.). Journal of Plant Nutrition, 41(4): 526–538. https://doi.org/10.1080/01904167.2017.1392568
  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M. 2004. Comparison of corn yield response to plant water stress caused by salinity and by drought. Agricultural Water Management, 65: 95–101. https://doi.org/10.1016/j.agwat. 2003.08.001
  • Kına E, Uysal İ, Mohammed FS, Doğan M, Sevindik M. 2021. In-vitro antioxidant and oxidant properties of Centaurea rigida. Turkish Journal of Agriculture-Food Science and Technology, 9(10): 1905-1907.
  • Kim HS, Chin KB. 2016. Effects of drying temperature on antioxidant activities of tomato powder and storage stability of pork patties. Korean Journal for Food Science of Animal Resources, 36(1): 51. doi: 10.5851/kosfa.2016.36.1.51
  • Krupodorova T, Barshteyn V, Sevindik M. 2022. Antioxidant and antimicrobial potentials of mycelial extracts of Hohenbuehelia myxotricha grown in different liquid culture media. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 103(1):19-28.
  • Kul R, Arjumend T, Ekinci M, Yildirim E, Turan M, Argin S. 2021. Biochar as an organic soil conditioner for mitigating salinity stress in tomato. Soil Science and Plant Nutrition, 1- 14. https://doi.org/10.1080/00380768.2021.1998924
  • Laghari M, Mirjat MS, Hu Z, Fazal S, Xiao B, Hu M, Chen Z, Guo D. 2015. Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135: 313– 320. https://doi.org/10.1016/j.catena.2015.08.013
  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4): 443-449. https://doi.org/10.1016/j.geoderma.2010.05.013
  • Ma D, Sun D, Wang C, Ding H, Qin H, Hou J, Huang X, Xie Y, Guo T. 2017. Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Frontiers in Plant Science, 8: 860. https://doi.org/10.3389/fpls. 2017.00860
  • Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, Ahmad A, Ahmad P. 2022. Reactive Oxygen Species in plants: From source to sink. Antioxidants, 11(2): 225. https://doi.org/10.3390/antiox11020225
  • Masud MM, Jiu-Yu LI, Ren-Kou XU. 2014. Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic ultisol. Pedosphere, 24(6): 791- 798. https://doi.org/10.1016/S1002-0160(14)60066-7
  • Mehdizadeh L, Moghaddam M, Lakzian A. 2019. Alleviating negative effects of salinity stress in summer savory (Satureja hortensis L.) by biochar application. Acta Physiologiae Plantarum, 41(6): 1-13. https://doi.org/10.1007/s11738-019- 2900-3
  • Mohammed FS, Kına E, Uysal İ, Mencik K, Doğan M, Pehlivan M, Sevindik M. 2022. Antioxidant and Antimicrobial Activities of Ethanol Extract of Lepidium spinosum. Turkish Journal of Agriculture-Food Science and Technology, 10(6): 1116-1119.
  • Munns R, James RA, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57: 1025–1043. https://doi.org/10. 1093/jxb/erj100
  • Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867–880. https://doi.org/10.1093/ oxfordjournals.pcp.a076232
  • Ors S, Ekinci M, Yildirim E, Sahin U, Turan M, Dursun A. 2021. Interactive effects of salt and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. S. African Journal Botanica, 137: 335–339. https://doi.org/10.1016/j.sajb.2020.10.031
  • Parkash V, Singh S. 2020. Potential of biochar application to mitigate salinity stress in eggplant. HortScience, 55(12): 1946-1955. https://doi.org/10.21273/HORTSCI15398-20.
  • Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan MU, Sarwar MI. 2019. A review: Impact of salinity on plant growth. Nature and Science, 17(1):34-40.
  • Sahin U, Kuslu Y, Kiziloglu FM, Cakmakci T. 2016. Growth, yield, water use and crop quality responses of lettuce to different irrigation quantities in a semi-arid region of high altitude. Journal of Applied Horticulture, 18(3):195-202.
  • Sattar A, Sher A, Ijaz M, Irfan M, Butt M, Abbas T, Cheema MA. 2019. Biochar application improves the drought tolerance in maize seedlings. Phyton, 88(4): 379. doi:10.32604/phyton.2019.04784
  • Sevindik M, Akgul H, Pehlivan M, Selamoglu Z. 2017. Determination of therapeutic potential of Mentha longifolia ssp. longifolia. Fresen Environ Bull, 26(7): 4757-4763.
  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48(2): 127-135. https://doi.org/10.1007/s10725-005-5482-6
  • Smart RE, Barss HD. 1973. The effect of environment and irrigation interval on leaf water potantial of four horticultural species. Agricultural Meteorology, 12: 337-346. https://doi.org/10.1016/0002-1571(73)90030-7
  • Tartoura KAH, Youssef SA, Tartoura EAA. 2014. Compost alleviates the negative effects of salinity via upregulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regulation, 74: 299–310. https://doi.org/10.1007/ s10725-014-9923-y
  • Tolay I. 2021. The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLoS One, 16(2):e0246493. https://doi.org/10.1371/journal.pone.0246493
  • Xiao Q, Zhu L, Shen Y, Li S. 2016. Sensitivity of soil water retention and availability to biochar addition in rainfed semiarid farmland during a three-year field experiment. Field Crops Research, 196: 284–293. https://doi.org/10.1016/ j.jplph.2005.07.007
  • Uysal İ, Mohammed FS, Şabik AE, Kına E, Sevindik M. 2021. Antioxidant and Oxidant status of medicinal plant Echium italicum collected from different regions. Turkish Journal of Agriculture-Food Science and Technology, 9(10): 1902- 1904.
  • Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J, Joseph S, Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327: 235–246. https://doi.org/10.1007/s11104-009-0050-x.
  • Yerli C, Cakmakci T, Sahin U. 2022. CO2 emissions and their changes with H2O emissions, soil moisture, and temperature during the wetting–drying process of the soil mixed with different biochar materials. Journal of Water and Climate Change. https://doi.org/10.2166/wcc.2022.293
  • Zhang A, Bian R, Pan G, Cui L, Hussain Q, Li L, Zheng J, Zheng J, Zhang X, Han X, Yu X. 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Reserach, 127: 153–160. https://doi.org/10.1016/j.fcr.2011.11.020
  • Zhang G, Johkan M, Hohjo M, Tsukagoshi S, Maruo T. 2017. Plant growth and photosynthesis response to low potassium conditions in three lettuce (Lactuca sativa) types. The Horticulture Journal, OKD-008: 1-11. https://doi.org/ 10.2503/hortj.OKD-008
  • Zhang K, Zhang Y, Sun J, Meng J, Tao J. 2021. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 158: 475-485. https://doi.org/10.1016/j.plaphy.2020.11.031
APA ÇAKMAKCI T, Çakmakcı Ö, Şahin Ü (2022). The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. , 2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
Chicago ÇAKMAKCI TALIP,Çakmakcı Özlem,Şahin Üstün The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. (2022): 2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
MLA ÇAKMAKCI TALIP,Çakmakcı Özlem,Şahin Üstün The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. , 2022, ss.2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
AMA ÇAKMAKCI T,Çakmakcı Ö,Şahin Ü The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. . 2022; 2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
Vancouver ÇAKMAKCI T,Çakmakcı Ö,Şahin Ü The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. . 2022; 2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
IEEE ÇAKMAKCI T,Çakmakcı Ö,Şahin Ü "The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions." , ss.2560 - 2570, 2022. 10.24925/turjaf.v10i12.2560-2570.5653
ISNAD ÇAKMAKCI, TALIP vd. "The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions". (2022), 2560-2570. https://doi.org/10.24925/turjaf.v10i12.2560-2570.5653
APA ÇAKMAKCI T, Çakmakcı Ö, Şahin Ü (2022). The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10(12), 2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
Chicago ÇAKMAKCI TALIP,Çakmakcı Özlem,Şahin Üstün The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10, no.12 (2022): 2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
MLA ÇAKMAKCI TALIP,Çakmakcı Özlem,Şahin Üstün The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.10, no.12, 2022, ss.2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
AMA ÇAKMAKCI T,Çakmakcı Ö,Şahin Ü The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(12): 2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
Vancouver ÇAKMAKCI T,Çakmakcı Ö,Şahin Ü The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(12): 2560 - 2570. 10.24925/turjaf.v10i12.2560-2570.5653
IEEE ÇAKMAKCI T,Çakmakcı Ö,Şahin Ü "The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10, ss.2560 - 2570, 2022. 10.24925/turjaf.v10i12.2560-2570.5653
ISNAD ÇAKMAKCI, TALIP vd. "The Effect of Biochar Amendment on Physiological and Biochemical Properties and Nutrient Content of Lettuce in Saline Water Irrigation Conditions". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10/12 (2022), 2560-2570. https://doi.org/10.24925/turjaf.v10i12.2560-2570.5653