Yıl: 2023 Cilt: 10 Sayı: 1 Sayfa Aralığı: 217 - 235 Metin Dili: Türkçe DOI: 10.35193/bseufbd.1092574 İndeks Tarihi: 09-09-2023

Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi

Öz:
Katmanlı (eklemeli) imalat yöntemi geleneksel imalat yöntemlerine alternatif olarak geliştirilmiş ve araştırılmaya devam etmektedir. Bu yöntem, üç boyutlu bilgisayar destekli yazılımlardan doğrudan parça üretimi temeline dayanmaktadır. Üç boyutlu (3D) yazıcı olarak da adlandırılan katmanlı imalat, kullanılan metal malzeme türüne göre toz ve tel olarak ikiye ayrılmaktadır. Toz esaslı sistemde metal altlık üzerine biriktirilen tozların; elektron, lazer veya ark ısı kaynağı ile ergitilmesi veya sinterlenmesi ile parça üretilmektedir. Tel esaslı sistemde ise, MIG/MAG, TIG veya plazma kaynak sistemleri kullanılarak tel malzemenin ergitilmesi ve üst üste biriktirilmesi yöntemi kullanılmaktadır. Bu çalışmada Tel ark katmanlı imalat (TAKİ) yöntemi açıklanarak kullanılan ısı kaynağına göre sınıflandırılması yapılmıştır. Yöntem, üretim zamanında sağladığı azalmalar, net şekle yakın üretim sağlaması ve tel hammaddenin toza göre ucuz olması gibi avantajları ile endüstri için önemli araştırma konusu olmuştur. Bu çalışmada, sanayide ticari olarak kullanılan paslanmaz çelik, alüminyum, nikel süper alaşımları, magnezyum ve Ti6Al4V alaşımları için yapılan araştırmalar incelenmiştir. Mekanik özellikleri döküm-dövme gibi geleneksel imalat yöntemleri ile karşılaştırılmıştır. Yapılan üretimler ile elde edilen mekanik özelliklerde çelik alaşımları için soğuma şartlarının önemli olduğu ancak geleneksel imalat yöntemleriyle elde edilen değerlerin karşılanabileceği not edilmiştir. Alüminyum alaşımlarında üretimde veya sonrasında yapılan işlemlerin(hadde, dövme vb.) mekanik özelliklerin gelişmesini olumlu etkilediği tespit edilmiştir. Ayrıca Ti6Al4V alaşımları için yapılan üretimlerde istenilen mekanik özelliklerin yeterli seviyede sağlanabileceği görülmüştür.
Anahtar Kelime: Tel ark katmanlı imalat (TAKİ) Paslanmaz çelik Alüminyum Magnezyum Ti6Al4V

Wire Arc Additive Manufacturing (WAAM) Method and Investigation of Mechanical Properties for Different Materials

Öz:
The additive manufacturing method has been developed and continues to be investigated as an alternative to conventional manufacturing methods. This method is based on part production from 3D computer aided software. Additive manufacturing, also called a three-dimensional (3D) printing technology, is divided into two sections as powder and wire according to the type of used material. Powder-based system, the powder accumulated on the metal substrate; parts are produced by melting or sintering them with electron, laser, or arc heat source. In wire-based system, the method of melting and depositing the wire material using MIG / MAG, TIG or plasma welding systems is used. In this study, Wire arc additive manufacturing (WAAM) method is explained and classified according to the type of heat source. This method has become an important research topic for the industry with its advantages, such as reductions in production time, production close to net shape and cheapness of wire raw material compared to powder. In this study, research about stainless steel, aluminium, nickel super alloys, magnesium, and Ti6Al4V alloys which are used commercially in industry were reviewed. Mechanical properties were compared with traditional manufacturing methods such as casting and forging. It has been noted that the cooling conditions for steel alloys are important for mechanical properties obtained in the productions. It has been determined for aluminium alloys that the processes performed during or after production (rolling, forging, etc.) positively affect mechanical properties. In addition, it has been seen that the desired mechanical properties can be achieved for Ti6Al4V alloys.
Anahtar Kelime: Wire arc additive manufacturing (WAAM) Stainless steel Aluminum Magnesium Ti6Al4V

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] ASTM International. (2021). 52900:2021 Additive manufacturing-general principles-fundamentals and vocabulary. ASTM International, USA.
  • [2] Turhan, S., & Özsoy, A. (2016). DMLS yöntemiyle imal edilen Ti6Al4V alaşım özelliklerine işlem parametrelerinin etkisi. SDU International Journal of Technological Science, 8 (2),15-27.
  • [3] Aktimur, B., & Gökpınar, E. S. (2015). Katmanlı üretimin havacılıktaki uygulamaları. Gazi Üniversitesi Fen Bilimleri Dergisi, 3 (2), 463–469.
  • [4] Zhang, J., Wang, X., Paddea, S., & Zhang, X. (2016). Fatigue crack propagation behavior in wire+arc additive manufactured Ti6Al4V: Effects of microstructure and residual stress. Materials and Design, 90, 551-561.
  • [5] Oesterreicher, A., Wiener, J., Roth, M., Moser, A., Gmeiner, R., Edler, M., Pinter, G., & Griesser, T. (2016). Tough and degradable photopolymers derived from alkyne monomers for 3D printing of biomedical materials. Polymer Chemistry, 32, 5169-5180.
  • [6] Zhou, Y., Qin, G., Li, L., Lu, X., Jing, R., Xing, X., & Yang, Q. (2020). Formability, microstructure and mechanical properties of Ti-6Al-4V deposited by wire and arc additive manufacturing with different deposition paths. Materials Science and Engineering: A, 772, 138654.
  • [7] Hauser, T., Silva, A., Reisch, R., T., Volpp, J., Kamps, T., & Kaplan, A. (2020). Fluctuation effects in wire arc additive manufacturing of aluminum analyzed by high-speed imaging. Journal of Manufacturing Processes, 56, 1088–1098.
  • [8] Dinovazer, M., Chen, X., Lallberte, J., Huamg, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure, Additive Manufacturing, 26, 138-146.
  • [9] Gonzalez, J., Rodriquez, I., Prado-Cerqueira, J. L., Diequez, J. L., & Pereira, A. (2017). Additive manufacturing with GMAW welding and CMT technology, Procedia Manufacturing, 13, 840-847.
  • [10] Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., & Colegrove, P. (2016). Wire + arc additive manufacturing. Materials Science and Technology, 32 (7), 641-647.
  • [11] Tabernero, I., Paskual, A., Álvarez, P., & Suárez, A. (2018). Study on arc welding processes for high deposition rate additive manufacturing. Procedia CIRP, 68, 358-362.
  • [12] Wu, B., Pan, Z., Ding, D., Cuiuri, D., & Li, H. (2018). Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing, Additive Manufacturing 23, 151–160.
  • [13] Yılmaz, O., & Ugla, A. A. (2016). Shaped metal deposition technique in additive manufacturing: A review, Proceedings of Instution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 230 (10), 1781-1798.
  • [14] Wang, C., Suder, W., Ding, J., & Williams, S. (2021). Wire based plasma arc and laser hybrid additive manufacture of Ti6Al4V, Journal of Materials Processing Tech., 293, 117080.
  • [15] Özer,G. (2020). Eklemeli üretim teknolojileri üzerine bir derleme. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1): 606 – 621.
  • [16] Sürmen, H. K. (2019). Eklemeli imalat (3B Baskı): Teknolojiler ve Uygulamalar, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24, 2, 373-392.
  • [17] Poyraz, Ö., & Kuşhan, M. C. (2018). Havacılık komponentlerinin bakım uygulamalarında katmanlı imalat teknolojilerinin kullanımı. Mühendis ve Makina 59, 691, 59-69.
  • [18] Çalışkan, C. İ., & Arpacıoğlu, Ü. (2020). Yapı üretiminde eklemeli imalat teknolojilerinin karşılaştırılmalı değerlendirmesi, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25, 2, 1117-1136.
  • [19] Güngör, A. (2020). Türkiye’de katmanlı imalat ve gemi inşaatı üzerine etkileri. Gemi ve Deniz Teknolojisi Dergisi, 218, 36-53.
  • [20] Özsolak, O. (2019). Thermal changes and modelling in additive manufacturing. International Journal of Innovative Engineering Applications,3,2, 33-38.
  • [21] Aktürk, M., & Korkmaz, M. E. (2021). Eklemeli imalat yöntemi ile üretilmiş alüminyum alaşımlarının malzeme yapısal parametrelerinin belirlenmesi üzerine bir derleme, İmalat Teknolojileri ve Uygulamaları 2, 1, 49-60.
  • [22] Gülcan, O., Konukseven, E. İ., & Temel, S. (2017). Katmanlı imalatla üretilen Ti6Al4V parçalarının mekanik özellikleri. Makina Tasarım ve İmalat Dergisi,15, 1, 27-37.
  • [23] Güler, S., Serindağ, H. T., & Çam, G. (2022). Tel ark eklemeli imalat: son gelişmeler ve değerlendirmeler, Mühendis ve Makina 63, 706, 82-116.
  • [24] Ayan Y., & Kahraman N. (2018). Metal eklemeli imalat: Tel ark yöntemi ve uygulamaları, International Journal of 3D Printing Technologies and Digital Industry 2, 3, 74-84.
  • [25] Hönnige, J. R., Colegrove, P., & Williams, S. (2017). Improvement of microstructure and mechanical properties in wire+arc additively manufactured Ti6Al4V with machine hammer peening, Procedia Engineering 216, 8–17.
  • [26] Jin, W., Zhang, C., Jin, S., Tian, Y., Wellmann, D., & Liu, W. (2020). Wire arc additive manufacturing of stainless steels: A Review, Applied Sciences, 10, 1563.
  • [27] Wang, J., Pan, Z., Cuiuri, D., &Li, H. (2019). Phase constituent control and correlated properties of titanium aluminide intermetallic alloys through dual-wire arc additive manufacturing, Materials Letters, 242, 111– 114.
  • [28] Omiyale, B. O., Olugbade, T. O., Abioye, T. E. & Farayibi, P. K. (2022). Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review. Materials Science and Technology, 38,7, 391-408.
  • [29] Queguineur A, Rückert G, Cortial F, &Hascoet J. Y. (2018). Evaluation of wire arc additive manufacturing for large-sized components in naval applications. Welding in the World, 62, 259–266.
  • [30] Buchanan, C., & Gardner, L. (2019). Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 180, 332–348.
  • [31] Li, F., Chen, S., Wu., Z., & Yan, Z. (2018). Adaptive process control of wire and arc additive manufacturing for fabricating complex-shaped components, The International Journal of Advanced Manufacturing Technology, 96,871-879.
  • [32] Stavinoha, J. N. (2012). Investigation of plasma arc welding as a method for the additive manufacturing of titanium-(6) aluminum-(4) vanadium alloy components. Master Thesis, Montana Tech of the University of Montana, Master of Science General Engineering, USA.
  • [33] Brandl, E., Baufeld, B., Leyens, C., & Gault, R. (2010). Additive manufactured Ti 6Al 4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys. Procedia 5, 595–606.
  • [34] Ho, A., Zhao, H., Fellowes, J.W., Martina, F., Davis, A.E., & Pragnell, P.B. (2019). On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing. Acta Materialia, 166, 306-323.
  • [35] Wu, B., Ding, D., Pan, Z., Cuiuri, D., Li, H., Han, J., & Fei, Z. (2017). Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. J. Mater. Process Technol. 250, 304–312.
  • [36] Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., & Fei, Z. (2018). The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy. J. Mater. Process Technol. 258, 97–105.
  • [37] Bermingham, M. J., Nicastro, L., Kent, D., Chen, Y., & Dargusch, M. S. (2018). Optimizing the mechanical properties of Ti-6Al-4V components produced by wire + arc additive manufacturing with post-process heat treatments. Journal of Alloys and Compounds, 753, 247–255.
  • [38] Ding, D. H., Pan, Z. X., Cuiuri, D., & Li, H. J. (2015). Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The Int. J. of Advanced Manufacturing Technology, 81, 465-481.
  • [39] Li, J. Z., Alkahari, M. R., Rosli, N. A. B., Hasan, R., Sudin, M. N., & Ramli, F., R. (2019). Review of wire arc additive manufacturing for 3D metal printing. Int. J. of Automation Technology, 13 (3), 346-353.
  • [40] Rodrigues, T.A., Duarte, V., Miranda, R. M., V., Santos, T. G., & Oliveira, J. P. (2019). Current status and perspectives on wire and arc additive manufacturing (WAAM), Materials, 12(7), 1121.
  • [41] Sawant, M. S., & Jain, N. K. (2017). Characteristics of single-track and multi-track depositions of stellite by Micro-plasma Transferred Arc Powder Deposition Process, J. of Materials Engineering and Performance, 26,8, 4029-4039.
  • [42] Correa, E. O., Costa, S. C., & Santos, J. N. (2008). Weldability of iron-based powder metal materials using pulsed plasma arc welding process, J. Mater. Process. Technol. 198, 323–329.
  • [43] Feng, J., Zhang, H. & He, P. The CMT short circuiting metal transfer process and its use in thin aluminum sheets welding. (2009). Materials and Design, 30, 1850-1852.
  • [44] Mou, G., Hua, X., Wang, M., & Li, F. (2019). Effects of Ni addition on removing Fe-Ti intermetallic compounds in cold metal transfer arc-brazed TC4/304L dissimilar joints. Journal of Manufacturing Processes, 38, 104-112.
  • [45] Wang, L., Suo, Y., Liang, Z., Wang D., & Wang, Q. (2019). Effect of titanium powder on microstructure and mechanical properties of wire + arc additively manufactured Al-Mg alloy, Materials Letters, 241, 231- 234.
  • [46] Lin, J., Lv, Y., Liu, Y., Sun, Z., Wang, K., Li, Z., Wu, Y., & Xu, B. (2017). Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment, Journal of the Mechanical Behavior of Biomedical Materials, 69, 19–29.
  • [47] McGuire, M. (2008). Stainless Steels for Design Engineers. ASM International, Materials Park, Ohio, USA, 304.
  • [48] Gordon, J. V., & Harlow, D. G. (2019). Statistical modeling of wire and arc additive manufactured stainless steel 304: microstructure and fatigue. International Journal of Reliability Quality and Safety Engineering, 26, 4 1950016.
  • [49] Bekker, A. C. M. & Verlinden, J. C. (2018). Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and cnc milling in stainless steel. Journal of Cleaner Production, 177, 438- 447.
  • [50] Yadollahi, A., Shamsaei, N., Thompson, S. M., & Seely, D. W. (2015). Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Materials Science & Engineering A, 644, 171-183.
  • [51] Aldalur, E., Veiga, F., Suarez, A., Bilbao, J., & Lamikiz, A. (2020). High deposition wire arc additive manufacturing of mild steel: Strategies and heat input effect on microstructure and mechanical properties, Journal of Manufacturing Processes 58, 615–626.
  • [52] Ge, J., Lin, J., Chen, Y., Lei, Y., & Fu, H. (2018). Characterization of wire arc additive manufacturing 2Cr13 part: Process stability, microstructural evolution, and tensile properties. Journal of Alloys and Compounds 748, 911-921.
  • [53] Yang, G., Deng, F., Zhou, S., Wu, B., Qin, L. & Zheng, J. (2022). Influence of shielding gas nitrogen content on the microstructure and mechanical properties of Cu reinforced maraging steel fabricated by wire arc additive manufacturing. Materials Science & Engineering A,832, 142463.
  • [54] Le, V. T., Mai, D. S., & Hoang, Q. H. (2020). Effects of cooling conditions on the shape, microstructures, and material properties of SS308L thin walls built by wire arc additive manufacturing, Materials Letters, 280, 128580.
  • [55] Wang, C., Liu, T. G., Zhu, P., Lu, Y. H., & Shoji, T. (2020). Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing. Materials Science & Engineering A, 796, 140006.
  • [56] Xu, X., Ganguly, S., Ding, J., & Guo, S., Williams, S., & Martina, F. (2018). Microstructural evolution and mechanical properties of maraging steel produced by wire+arc additive manufacture process, Materials Characterization 143, 152–162.
  • [57] Haden C. V., Zeng, G., Carter, F. M., Ruhl, C., Krick, B. A., & Harlow, D. G., (2017). Wire and arc additive manufactured steel: Tensile and wear properties. Additive Manufacturing, 16, 115–123.
  • [58] Wang, T., Zhang, Y., Wu, Z., & Shi, C. (2018). Microstructure and properties of die steel fabricated by WAAM using H13 wire. Vacuum, 149, 185-189.
  • [59] Le, V. T.& Mai, D. S. (2020). Microstructural and mechanical characteristics of 308L stainless steel manufactured by gas metal arc welding-based additive manufacturing. Materials Letters 271, 127791.
  • [60] Li, M., Lu, T., Dai, J., Jia, X., Gu, X., & Dai, T. (2020). Microstructure and mechanical properties of 308L stainless steel fabricated by laminar plasma additive manufacturing. Materials Science & Engineering A 770, 138523.
  • [61] Chen, X., Li, J., Cheng, X., He, B., Wang, H., & Huang, Z. (2017). Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing. Materials Science & Engineering A, 703, 567–577.
  • [62] Rodriguez, N., Vázquez, L., Huarte, I., Arruti, E., Tabernero, L., & Alvarez, P. (2018). Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel. Welding in the World, 62, 1083–1096.
  • [63] ASM International. (2008). Stainless Steels, Metals Handbook Desk Edition. Materials Park, USA, 368- 388.
  • [64] Horgar, A., Fostervoll, H., Nyhus, B., Ren, X., Eriksson, M., & Akselsen, O. M., (2018). Additive manufacturing using WAAM with AA5183 wire. Journal of Materials Processing Tech, 259, 68-74.
  • [65] Yongjie, L., Shengfu, Y., Ying, C., Runzhen, Y. & Yusheng, S. (2020). Wire and arc additive manufacturing of aluminum alloy lattice structure. Journal of Manufacturing Processes, 50, 510-519.
  • [66] Campatellia, G., Campanella, D., Barcellona, A., Fratini, L., Grossia, N., & Ingarao, G. (2020). Microstructural, mechanical and energy demand characterization of alternative WAAM techniques for Al- alloy parts production. CIRP Journal of Manufacturing Science and Technology, 31, 492-499.
  • [67] Gu, J., Wang, X., Bai, J., Ding, J., Williams, S., Zhai, Y., & Liu, K., (2018). Deformation microstructures and strengthening mechanisms for the wire +arc additively manufactured Al-Mg4.5Mn alloy with inter- layer rolling. Materials Science & Engineering A, 712, 292–301.
  • [68] Ding, Y., Muñiz-Lerma, J.A., Trask, M., Chou, S., Walker, A. & Brochu, M. (2016). Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys. MRS Bulletin, 41, 745– 751.
  • [69] Fang, X., Zhang, L., Chen, G., Huang, K., Xue, F., Wang, L., Zhao, J., & Lu, B. (2021). Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering. Materials Science & Engineering A, 800, 140168.
  • [70] Gu, J., Ding, J., Williams, S., Gu, H., Bai, J., Zhai, Y., & Ma, P. (2016). The strengthening effect of inter - layer cold working and post-deposition heat treatment on the additively manufactured Al– 6.3Cu alloy. Materials Science & Engineering A, 651, 18–26.
  • [71] Geng, H., Li, J., Xiong, J., Lin, X., & Zhang, F. (2017). Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. Journal of Materials Engineering and Performance, 26, 621–629.
  • [72] ASM International. (1990). Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Volume 2, Metals Handbook. USA, 29-122.
  • [73] Gu, J., Yang, S., Gao, M., Bai, J., Zhai, Y., & Ding, J. (2020). Micropore evolution in additively manufactured aluminum alloys under heat treatment and inter-layer rolling. Materials & Design, 186, 108288.
  • [74] Hauser T., Reisch, R. T., Seebauer S., Parasar, A., Kamps T., Casati, R., Volpp, J., & Kaplan, A. F. H., (2021). Multi-Material Wire Arc Additive Manufacturing of low and high alloyed aluminum alloys with in-situ material analysis. Journal of Manufacturing Processes, 69, 378-390.
  • [75] ASM International. (2008). Nonferrous Alloys and Special-Purpose Materials, Metals Handbook, Desk Edition. The Materials Information Society, USA, 415-639.
  • [76] Lan, B., Wang, Y., Liu, Y., Hooper, P., Hooper, C., Zhang, G., Zhang, X., & Jiang, J. (2021). The Influence of microstructural anisotropy on the hot deformation of wire arc additive manufactured (WAAM) Inconel 718. Materials & Engineering A, 823, 141733.
  • [77] Wang, Y., Chen, X., Shen., Q., Su., C., Zhang, Y., Jayalakshmi, S. & Singh, R. A., (2021). Effect of magnetic field on microstructure and mechanical properties of Inconel 625 superalloy fabricated by wire arc additive manufacturing. Journal of Manufacturing Processes, 64, 10-19.
  • [78] Rajkumar, V., Visnukumar, M., Sowrirajan, M. & Kannan A. R. (2022). Microstructure, mechanical properties and corrosion behavior of Incoloy 825 manufactured using wire arc additive manufacturing. Vacuum, 203, 111324.
  • [79] Qiu, Z., Wu, B., Zhu, H., Wang, Z., Hellier, A., Ma, Y., Li, H., Muransky, O., & Wexler, D. (2020). Microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy. Materials and Design, 195, 100007.
  • [80] Seow, C. E., Coules, H. E., Wu, G., Khan, R., Xu, X., & Williams, S. (2019). Wire+arc additively manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Materials and Design, 183, 108157.
  • [81] Safarzade, A, Sharifitabar, M. & Afarani, M. S. (2020). Effects of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process. Transactions of Nonferrous Metals Society of China, 30, 3016-3030.
  • [82] Qiu, Z., Wu., B., Wang., Z., Wexler, D., Carpenter, K., Zhu, H., Muransky, O., Zhang, J. & Li, H. (2021). Effects of post heat treatment on the microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy. Materials Characterization, 177, 111158.
  • [83] Xi, N., Fang, X., Duan, Y., Zhang, Q.& Huang, K. (2022). Wire arc additive manufacturing of Inconel 718: Constitutive modelling and its microstructure basis. Journal of Manufacturing Processes, 75, 1134-1143.
  • [84] Zhang, T., Li, H., Gong, H., Wu, Y., Ahmad, A. S. & Chen, X. (2021). Effect of rolling force on tensile properties of additively manufactured Inconel 718 at ambient and elevated temperatures. Journal of Alloys and Compounds, 884, 161050.
  • [85] Wang, K., Liu, Y., Sun, Z., Lin, J., Lv, Y. & Xu, B., (2020). Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing. Journal of Alloys and compounds, 819, 152936.
  • [86] Sharifitabar, M., Khorshahian, S., Afarani, M. S., Kumar, P. & Jain, N. K. (2022). High temperature oxidatiton performance of Inconel 625 superalloy fabricated by wire arc additive manufacturing. Corrosion Science, 197,110087.
  • [87] Yuan, X., Qiu, H., Zeng, F., Luo, W., Li, H., Wang, X., Guan, N. & Cui, F. (2022). Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturing. Journal of Manufacturing Processes, 77, 63-74.
  • [88] Wang, P., Zhang, H., Zhu, H., Li, Q., & Feng, M. (2021). Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: processing, microstructure, and mechanical behavior. Journal of Materials Processing Tech., 288,116895.
  • [89] Klein, T., Arnoldt, A., Schnall, M., & Gneiger, S. (2021). Microstructure formation and mechanical properties of wire-arc additive manufactured magnesium alloy, JOM, 73, 4, 1126-1134.
  • [90] Guo, Y., Pan, H., Ren, L, & Quan, G. (2019). Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy. Materials Letters, 247,4-6.
  • [91] Fang, X., Yang, J., Wang, S., Wang, C., Huang, K., Li, H., & Lu, B. (2022). Additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: Microstructure, mechanical property, and electromechanical corrosion performance. Journal of Materials Processing Tech., 300, 117430.
  • [92] Ying, T., Zhao, Z., Yan, P., Wang, J., & Zeng, X. (2022). Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy. Materials Letters, 307, 131014.
  • [93] Guo, Y., Quan, G., Çelikin, M., Ren, L., Zhan, Y., Fan, L.& Pan, H. (2022). Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing. Journal of magnesium and alloys, 10, 7, 1930-1940.
  • [94] Yang, X., Liu, J., Wang, Z., Lin, F., Huang, W., & Liang, E. (2020). Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process. Materials Science & Engineering A, 774, 138942.
  • [95] Li, J., Qiu, Y., Yang, J., Sheng, Y., Yi, Y., Zeng, X., Chen, L., Yin, F., Su, J., Zhang, T., Tong, X., & Guo,B. (2021). Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCI solution. Journal of Magnesium Alloys, basımda.
  • [96] Xia, X., Chen, M., Lu, Y., Fan, F., Zhu, C., Huang, J., Deng, T. & Zhu, S. (2013). Microstructure and mechanical properties of isothermal multi-axial forging formed AZ61 Mg alloy. Transactions of Nonferrous Metals Society of China, 23, 3186-3192.
  • [97] Karunakaran, R., Ortgies, S., Tamayol, A., Bobaru, F., & Sealy, M. P. (2020). Additive manufacturing of magnesium alloys. Bioactive Materials, 5, 44-54.
  • [98] Baufeld, B., &Biest, O. (2009). Mechanical properties of Ti6Al4V specimens produced by shaped metal deposition. Science and Technology of Advanced Materials, 10 (1).
  • [99] Lin, J. J., Lv, Y. H., Liu, Y. X., Xu, B. S., Sun, Z., Li, Z. G., & Wu, Y. X. (2016). Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing, Materials and Design, 102, 30–40.
  • [100] Martina, F., Mehnen, J., Williams, S., Colegrove, P., & Wang, F. (2012). Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti6Al4V. Journals of Materials Processing Technology, 212 (6), 1377-1386.
  • [101] Xie, Y., Gao, M., Wang, F., Zhang, C., Hao, K., Wang, H., & Zeng, X. (2018). Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V. Materials Science & Engineering A, 709, 265-269.
  • [102] Wu, B., Pan, Z., Ding, D., Cuiuri, D., Li, H., Xu, J., & Norrish, J. (2018). A review of the wire arc additive manufacturing of metals: properties, defects, and quality improvement. Journal of manufacturing processes, 35 127-139.
  • [103] Li, F., Chen, S., Shi, J., & Tian, H. (2018). Investigation on Surface Quality in a Hybrid Manufacturing System Combining Wire and Arc Additive Manufacturing and Machining, Transactions on Intelligent Welding Manufacturing,127-137.
  • [104] Lu, Y., Wang, G, Zhang, M., Li, R., & Zhang, H. (2022). Microstructures, heat treatments and mechanical properties of AerMet100 steel fabricated by hybrid directed energy deposition, Additive Manufacturing, 56, 102885.
  • [105] Arana, M., Ukar, E., Rodriguez, I., Aguilar, D., & Álvarez, P. (2022). Influence of deposition strategy and heat treatment on mechanical properties and microstructure of 2319 aluminum WAAM components, Materials & Design, 221, 110974.
  • [106] Mishra, V., Ayas, C., Langelaar, M., & Keulen, F. (2022). Simultaneous topology and deposition direction optimization for Wire and Arc Additive Manufacturing, Manufacturing Letters, 31, 45–51.
  • [107] Ding, D., He, F., Yuan, L., Zengxi Pan, Z., Wang, L., & Ros, M. (2021). The first step towards intelligent wire arc additive manufacturing: An automatic bead modelling system using machine learning through industrial information integration, Journal of Industrial Information Integration, 23, 100218.
APA ÇAKIR E, Ulutan M (2023). Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. , 217 - 235. 10.35193/bseufbd.1092574
Chicago ÇAKIR ERSİN,Ulutan Mustafa Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. (2023): 217 - 235. 10.35193/bseufbd.1092574
MLA ÇAKIR ERSİN,Ulutan Mustafa Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. , 2023, ss.217 - 235. 10.35193/bseufbd.1092574
AMA ÇAKIR E,Ulutan M Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. . 2023; 217 - 235. 10.35193/bseufbd.1092574
Vancouver ÇAKIR E,Ulutan M Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. . 2023; 217 - 235. 10.35193/bseufbd.1092574
IEEE ÇAKIR E,Ulutan M "Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi." , ss.217 - 235, 2023. 10.35193/bseufbd.1092574
ISNAD ÇAKIR, ERSİN - Ulutan, Mustafa. "Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi". (2023), 217-235. https://doi.org/10.35193/bseufbd.1092574
APA ÇAKIR E, Ulutan M (2023). Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10(1), 217 - 235. 10.35193/bseufbd.1092574
Chicago ÇAKIR ERSİN,Ulutan Mustafa Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 10, no.1 (2023): 217 - 235. 10.35193/bseufbd.1092574
MLA ÇAKIR ERSİN,Ulutan Mustafa Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, vol.10, no.1, 2023, ss.217 - 235. 10.35193/bseufbd.1092574
AMA ÇAKIR E,Ulutan M Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2023; 10(1): 217 - 235. 10.35193/bseufbd.1092574
Vancouver ÇAKIR E,Ulutan M Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2023; 10(1): 217 - 235. 10.35193/bseufbd.1092574
IEEE ÇAKIR E,Ulutan M "Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi." Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10, ss.217 - 235, 2023. 10.35193/bseufbd.1092574
ISNAD ÇAKIR, ERSİN - Ulutan, Mustafa. "Tel Ark Katmanlı İmalat (TAKİ) Yöntemi ve Farklı Malzemelerde Mekanik Özelliklerinin İncelenmesi". Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 10/1 (2023), 217-235. https://doi.org/10.35193/bseufbd.1092574