Yıl: 2023 Cilt: 47 Sayı: 5 Sayfa Aralığı: 1160 - 1168 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3602 İndeks Tarihi: 21-11-2023

Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions

Öz:
The term sonophotodynamic therapy (SPDT) refers to a combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), in which the efficacy of the treatment is boosted by utilizing the proper amount of a sensitizer that is responsive to both light and ultrasound. Although it has been proven in photophysicochemical studies that SPDT enhances singlet oxygen production, related studies in the literature are very limited. Considering this situation, this study aims to investigate the efficacy of synthesized phthalocyanines in terms of PDT and SPDT. The singlet oxygen quantum values calculated as 0.13 for 5, 0.44 for 6, and 0.61 for 7 in photochemical (PDT) application increased to 0.18, 0.86, and 0.92, respectively, with sonophotochemical (SPDT) application. According to the results, singlet oxygen production was more efficient with SPDT. This work will add to the body of knowledge on employing the SPDT approach to increase singlet oxygen generation.
Anahtar Kelime: Photodynamic therapy phthalocyanine singlet oxygen sonophotodynamic therapy

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics. CA: A Cancer Journal for Clinicians 2014; 64: 9-29. https://doi.org/10.3322/caac.21208
  • [2] Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology- based efficacy-enhancing strategies. Acta Pharmaceutica Sinica B 2021; 11 (8): 2197-2219. https://doi.org/10.1016/j.apsb.2020.12.016
  • [3] Dy GK, Adjei AA. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA: A Cancer Journal for Clinicians 2013; 63: 249-279. https://doi.org/10.3322/caac.21184
  • [4] Güzel E, Atmaca GY, Kuznetsov AE, Turkkol A, Bilgin MD et al. Ultrasound versus light: Exploring photophysicochemical and sonochemical properties of phthalocyanine-based therapeutics, theoretical study, and in vitro evaluations. ACS Applied Bio Materials 2022; 5 (3): 1139- 1150. https://doi.org/10.1021/acsabm.1c01199
  • [5] Chen H, Zhou X, Gao Y, Zheng B, Tang F et al. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discovery Today 2014; 19 (4): 502-509. https://doi.org/10.1016/j.drudis.2014.01.010
  • [6] AkkoçB,SamsunluT,IşıkŞ,ÖzçeşmeciM,AtmacaGYetal.Pegylatedmetal-freeandzinc(II)phthalocyanines:synthesis,photophysicochemical properties and in vitro photodynamic activities against head, neck and colon cancer cell lines. Dalton Transactions 2022; 51: 10136-10147. https://doi.org/10.1039/d2dt00704e
  • [7] Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Discovery Today 1999; 4: 507-517. https://doi.org/10.1016/S1359-6446(99)01412-9
  • [8] Felsher DW. Cancer revoked: oncogenes as therapeutic targets. Nature Reviews Cancer 2003; 3 (5): 375-379. https://doi.org/10.1038/nrc1070
  • [9] McEwan C, Nesbitt H, Nicholas D, Kavanagh ON, McKenna K et al. Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer. Bioorganic & Medicinal Chemistry 2016; 24 (13): 3023-3028. https://doi.org/10.1016/j. bmc.2016.05.015
  • [10] Shen XM, Zheng BY, Huang XR, Wang L, Huang JD. First silicon (IV) phthalocyanine-nucleoside conjugates with high photodynamic activity. Dalton Transactions 2013; 42: 10398-10403. https://doi.org/10.1039/c3dt50910a
  • [11] Trendowski M. Using the promise of sonodynamic therapy in the clinical setting against disseminated cancers. Chemotherapy Research and Practice 2015; 2015: 316015. https://doi.org/10.1155/2015/316015
  • [12] Umemura SI, Yumita N, Nishigaki R, Umemura K. Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Japanese Journal of Cancer Research 1990; 81 (9): 962-966. https://doi.org/10.1111/j.1349-7006.1990.tb02674.x
  • [13] Karanlık CC, Atmaca GY, Erdoğmuş A. Improved singlet oxygen yields of new palladium phthalocyanines using sonochemistry and comparisons with photochemistry. Polyhedron 2021; 206: 115351. https://doi.org/10.1016/j.poly.2021.115351
  • [14] Trendowski M. The promise of sonodynamic therapy. Cancer and Metastasis Reviews 2014; 33: 143-160. https://doi.org/10.1007/s10555- 013-9461-5
  • [15] Bakhshizadeh M, Moshirian T, Esmaily H, Rajabi O, Nassirli H et al. Sonophotodynamic therapy mediated by liposomal zinc phthalocyanine in a colon carcinoma tumor model: Role of irradiating arrangement. Iranian Journal of Basic Medical Sciences 2017; 20 (10): 1088-1092. https://doi.org/10.22038/IJBMS.2017.9410
  • [16] Wang X, Zhang W, Xu Z, Luo Y, Mitchell D et al. Sonodynamic and photodynamic therapy in advanced breast carcinoma: A report of 3 cases. Integrative Cancer Therapies 2009; 8: 283-287. https://doi.org/10.1177/1534735409343693
  • [17] Atmaca GY, Karanlık CC, Erdoğmuş A. Measurement of improved singlet oxygen generations of indium chloride phthalocyanines by comparatively sono-photochemical and photochemical studies. Dyes and Pigments 2021; 194: 109630. https://doi.org/10.1016/j. dyepig.2021.109630
  • [18] Karaoğlan GK. Synthesis of a novel zinc phthalocyanine with peripherally coordinated Ru (II) complexes; sono-photochemical, photochemical and photophysical studies. Journal of Molecular Structure 2022; 1261: 132886. https://doi.org/10.1016/j.molstruc.2022.132886
  • [19] Jin ZH, Miyoshi N, Ishiguro K, Umemura S, Kawabata K et al. Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice. The Journal of Dermatology 2000; 27: 294-306. https://doi.org/10.1111/j.1346-8138.2000. tb02171.x
  • [20] Li Q, Liu Q, Wang P, Feng X. Wang H et al. The effects of Ce6-mediated sono-photodynamic therapy on cell migration, apoptosis and autophagy in mouse mammary 4T1 cell line. Ultrasonics 2014; 54: 981-989. https://doi.org/10.1016/j.ultras.2013.11.009
  • [21] Atmaca GY. Investigation of the differences between sono-photochemical and photochemical studies for singlet oxygen generation of indium phthalocyanine. Inorganica Chimica Acta 2021; 515: 120052. https://doi.org/10.1016/j.ica.2020.120052
  • [22] Kolarova H, Tomankova K, Bajgar R, Kolar P, Kubinek R. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines. Ultrasound in Medicine & Biology 2009; 35: 1397-1404. https://doi.org/10.1016/j.ultrasmedbio.2009.03.004
  • [23] Kessel D, Lo J, Jeffers R, Fowlkes JB, Cain C. Modes of photodynamic vs. sonodynamic cytotoxicity. Journal of Photochemistry and Photobiology B: Biology 1995; 28: 219-221. https://doi.org/10.1016/1011-1344(94)07111-z
  • [24] Atmaca GY, Aksel M, Keskin B, Bilgin MD, Erdoğmuş A. The photo-physicochemical properties and in vitro sonophotodynamic therapy activity of Di-axially substituted silicon phthalocyanines on PC3 prostate cancer cell line. Dyes Pigments 2021; 184: 108760. https://doi. org/10.1016/j.dyepig.2020.108760
  • [25] Leznoff CC, Lever ABP. Phthalocyanines: properties and applications. New York, VHC, 2004.
  • [26] Mckeown NB. Phthalocyanine materials: synthesis, structure and function. Press syndicate of the University of Cambridge, Cambridge. 1998.
  • [27] Özçeşmeci M, Sancar Baş S, Akkurt B, Bolkent Ş, Hamuryudan E. Synthesis, characterization and staining performance of peripherally and non-peripherally substituted metallo-phthalocyanines bearing 1,3-bis-(trimethylamino)-2-propoxy groups. New Journal of Chemistry 2020; 44: 7786-7794. https://doi.org/10.1039/d0nj01404d
  • [28] Demir F, Yenilmez HY, Koca A, Bayır ZA. Metallo-phthalocyanines containing thiazole moieties: Synthesis, characterization, electrochemical and spectroelectrochemical properties and sensor applications. Journal of Electroanalytical Chemistry 2019; 832: 254- 265. https://doi.org/10.1016/j.jelechem.2018.11.003
  • [29] Ilgün C, Sevim AM, Çakar S, Özacar M, Gül A. Novel Co and Zn-Phthalocyanine dyes with octa-carboxylic acid substituents for DSSCs. Solar Energy 2021; 218: 169-179. https://doi.org/10.1016/j.solener.2021.02.042
  • [30] Nar I, Bortolussi S, Postuma I, Atsay A, Berksun E et al. A phthalocyanine-ortho-carborane conjugate for boron neutron capture therapy: Synthesis, physicochemical properties, and in vitro tests. ChemPlusChem 2019; 84: 345-351. https://doi.org/10.1002/cplu.201800560
  • [31] Özceşmeci M, Sancar-Baş S, Akkurt B, Hamuryudan E, Bolkent Ş. Synthesis and biological uses of A3B type water-soluble phthalocyanine alternate to Alcian blue. ChemistrySelect 2018; 3 (45): 12805-12812. https://doi.org/10.1002/slct.201803371
  • [32] Dalkılıç Z, Cheong BL, Hyosung C, Nar I, Yavuz NK et al. Tetra and octa substituted Zn(II) and Cu(II) phthalocyanines: Synthesis, characterization and investigation as hole-transporting materials for inverted type-perovskite solar cells. Journal of Organometallic Chemistry 2020; 922: 121419. https://doi.org/10.1016/j.jorganchem.2020.121419
  • [33] Özçeşmeci M, Özçeşmeci İ, Sorar İ, Hamuryudan E. Thin films of fluorinated groups substituted metallophthalocyanines as an optical material. Inorganic Chemistry Communications 2017; 86: 209-212. https://doi.org/10.1016/j.inoche.2017.10.026
  • [34] Li B, Lin L, Lin H, Wilson BC. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. Journal of Biophotonics 2016; 9 (11-12): 1314-1325. https://doi.org/10.1002/jbio.201600055
  • [35] Gümrükçü S, Özçeşmeci M, Sezer E, Ustamehmetoğlu B, Hamuryudan E. In-situ synthesis of phthalocyanines on electrospun TiO2 nanofiber by solvothermal process for photocatalytic degradation of methylene blue. Turkish Journal of Chemistry 2021; 45 (6): 2034- 2045. https://doi.org/10.3906/kim-2108-14
  • [36] Kobak RZU, Akyüz D, Koca A. Substituent effects to the electrochromic behaviors of electropolymerized metallophthalocyanine thin films. Journal of Solid State Electrochemistry 2016; 20 (5): 1311-1321. https://doi.org/10.1007/s10008-016-3120-z
  • [37] Özçeşmeci M, Özkan E, Hamuryudan E. Synthesis, characterization, and aggregation properties of functionalized polyfluorinated metallo-phthalocyanines. Journal of Porphyrins and Phthalocyanines 2013; 17: 972-979. https://doi.org/10.1142/S1088424613500764
  • [38] Kurt Ö, Özçeşmeci İ, Koca A, Gül A, Koçak MB. Synthesis, photophysical and electrochemical properties of novel hexadeca-substituted phthalocyanines bearing naphthoxy groups. Dyes and Pigments 2017; 137: 236-243. https://doi.org/10.1016/j.dyepig.2016.10.014
  • [39] Dumoulin F, Durmuş M, Ahsen V, Nyokong T. Synthetic pathways to water-soluble phthalocyanines and close analogs. Coordination Chemistry Reviews 2010; 254: 2792-2847. https://doi.org/10.1016/j.ccr.2010.05.002
  • [40] Moeini Alishah M, Yenilmez HY, Özçeşmeci İ, Sesalan BŞ, Altuntaş Bayır Z. Synthesis of quaternized zinc(II) and cobalt(II) phthalocyanines bearing pyridine-2-yl-ethynyl groups and their DNA binding properties. Turkish Journal of Chemistry 2018; 42: 572-585. https://doi. org/10.3906/kim-1707-54
  • [41] Koçan H, Kaya K, Özçeşmeci İ, Sesalan BŞ, Göksel M et al. Photophysicochemical, calf thymus DNA binding and in vitro photocytotoxicity properties of tetra-morpholinoethoxy-substituted phthalocyanines and their water-soluble quaternized derivatives. Journal of Biological Inorganic Chemistry 2017; 22: 1251-1266. https://doi.org/10.1007/s00775-017-1499-3
  • [42] Özçeşmeci M, Ecevit ÖB, Sürgün S, Hamuryudan E. Tetracationic fluorinated zinc(ii)phthalocyanine: Synthesis, characterization and DNA-binding properties. Dyes and Pigments 2013; 96: 52-58. https://doi.org/10.1016/j.dyepig.2012.06.018
  • [43] Lo PC, Zhao B, Duan W, Fong WP, Ko WH et al. Synthesis and in vitro photodynamic activity of mono-substituted amphiphilic zinc(II) phthalocyanines. Bioorganic & Medicinal Chemistry Letters 2007; 17 (4): 1073-1077. https://doi.org/10.1016/j.bmcl.2006.11.017
  • [44] Özçeşmeci M. Synthesis, photophysical and photochemical properties of metal-free and zinc(II) phthalocyanines bearing α-naphtholbenzein units. Journal of Organometallic Chemistry 2014; 767: 16-21. https://doi.org/10.1016/j.jorganchem.2014.05.015
  • [45] Karanlık CC, Atmaca GY, Erdoğmuş A. Comparison of singlet oxygen production of ethyl vanillin substituted silicon phthalocyanine using sonophotodynamic and photodynamic methods. J ournal of Molecular Structure 2023; 1274: 134498. https://doi.org/10.1016/j. molstruc.2022.134498
  • [46] Keskin B, Okuyucu O, Altındal A, Erdoğmuş A. Novel indium(III) phthalocyanines; synthesis, photophysical and humidity sensing properties. New Journal of Chemistry 2016; 40: 5537-5545. https://doi.org/10.1039/c6nj00057f
  • [47] Atmaca GY, Karanlık CC, Erdoğmuş A. Novel silicon phthalocyanines with improved singlet oxygen generation by Sono- photochemical applications. Journal of Photochemistry and Photobiology, A: Chemistry 2023; 436: 114365. https://doi.org/10.1016/j. jphotochem.2022.114365
  • [48] Granados-Tavera K, Zambrano-Angulo M, Montenegro-Pohlhammer N, Atmaca GY, Sobotta L et al. Synergistic effect of ultrasound and light to efficient singlet oxygen formation for photodynamic purposes. Dyes and Pigments 2023; 210: 110986. https://doi.org/10.1016/j. dyepig.2022.110986
  • [49] Karanlık CC, Karanlık G, Taslimi P, Erdoğmuş A. Improvement of photochemical and enzyme inhibition properties of new BODIPY compound by conjugation with cisplatin. Polyhedron 2022; 225: 116042. https://doi.org/10.1016/j.poly.2022.116042
  • [50] Karanlık CC, Karanlık G, Erdoğmuş A. Water-soluble meso-thienyl BODIPY therapeutics: Synthesis, characterization, exploring photophysicochemical and DNA/BSA binding properties. Journal of Photochemistry and Photobiology, A: Chemistry 2023; 438: 114581. https://doi.org/10.1016/j.jphotochem.2023.114581
  • [51] Teng KX, Chen WK, Niu LY, Fang WH, Cui G et al. BODIPY-based photodynamic agents for exclusively generating superoxide radical over singlet oxygen. Angewandte Chemie International Edition 2021; 60: 19912-19920. https://doi.org/10.1002/anie.202106748
  • [52] Günsel A, Güzel E, Bilgiçli AT, Atmaca GY, Erdoğmuş A et al. Synthesis and investigation of photophysicochemical properties of novel ketone-substituted gallium (III) and indium (III) phthalocyanines with high singlet oxygen yield for photodynamic therapy. Journal of Luminescence 2017; 192: 888-892. https://doi.org/10.1016/j.jlumin.2017.08.014
  • [53] Köksoy MA, Köksoy B, Durmuş M, Bulut M. Preparation, characterization and photophysicochemical properties of novel tetra 7-(diethyl 2-methylmalonatoxy)-3-(p-oxyphenyl)coumarin-substituted zinc(II) and indium(III)chloride phthalocyanines. Journal of Organometallic Chemistry 2016; 822: 125-134. https://doi.org/10.1016/j.jorganchem.2016.08.009
  • [54] Nene LC, Nyokong T. The in-vitro proliferation-suppression of MCF-7 and HeLa cell lines mediated by differently substituted ionic phthalocyanines in sonodynamic therapy supplemented-photodynamic therapy. Journal of Inorganic Biochemistry 2023; 239: 112084. https://doi.org/10.1016/j.jinorgbio.2022.112084
  • [55] Atmaca GY, Aksel M, Bilgin MD, Erdoğmuş A. Comparison of sonodynamic, photodynamic and sonophotodynamic therapy activity of fluorinated pyridine substituted silicon phthalocyanines on PC3 prostate cancer cell line. Photodiagnosis and Photodynamic Therapy 2023; 42: 103339. https://doi.org/10.1016/j.pdpdt.2023.103339
  • [56] Can Karanlık C, Aguilar-Galindo F, Sobotta L, Güzel E, Erdoğmuş A. Combination of light and ultrasound: Exploring sono-photochemical activities of phthalocyanine-based sensitizers. The Journal of Physical Chemistry C, 2023; 127 (19): 9145-9153. https://doi.org/10.1021/ acs.jpcc.3c01176
  • [57] Ünlü S, Elmalı FT, Atmaca GY, Erdoğmuş A. Synthesis of axially Schiff base new substituted silicon phthalocyanines and investigation of photochemical and sono-photochemical properties. Photodiagnosis and Photodynamic Therapy, 2022; 40: 103192. https://doi. org/10.1016/j.pdpdt.2022.103192
  • [58] Nene LC, Nyokong T. Enhancement of the in vitro anticancer photo-sonodynamic combination therapyactivity of cationic thiazole- phthalocyanines using gold and silver nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 2023; 435: 114339. https://doi.org/10.1016/j.jphotochem.2022.114339
  • [59] Durmuş M, Nyokong T. Synthesis, photophysical and photochemical properties of aryloxy tetra-substituted gallium and indium phthalocyanine derivatives. Tetrahedron 2007; 63: 1385-1394. https://doi.org/10.1016/j.tet.2006.11.089
APA Ozcesmeci M, Can C, ERDOGMUS A, Hamuryudan E (2023). Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. , 1160 - 1168. 10.55730/1300-0527.3602
Chicago Ozcesmeci Mukaddes,Can Ceren,ERDOGMUS ALI,Hamuryudan Esin Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. (2023): 1160 - 1168. 10.55730/1300-0527.3602
MLA Ozcesmeci Mukaddes,Can Ceren,ERDOGMUS ALI,Hamuryudan Esin Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. , 2023, ss.1160 - 1168. 10.55730/1300-0527.3602
AMA Ozcesmeci M,Can C,ERDOGMUS A,Hamuryudan E Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. . 2023; 1160 - 1168. 10.55730/1300-0527.3602
Vancouver Ozcesmeci M,Can C,ERDOGMUS A,Hamuryudan E Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. . 2023; 1160 - 1168. 10.55730/1300-0527.3602
IEEE Ozcesmeci M,Can C,ERDOGMUS A,Hamuryudan E "Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions." , ss.1160 - 1168, 2023. 10.55730/1300-0527.3602
ISNAD Ozcesmeci, Mukaddes vd. "Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions". (2023), 1160-1168. https://doi.org/10.55730/1300-0527.3602
APA Ozcesmeci M, Can C, ERDOGMUS A, Hamuryudan E (2023). Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. Turkish Journal of Chemistry, 47(5), 1160 - 1168. 10.55730/1300-0527.3602
Chicago Ozcesmeci Mukaddes,Can Ceren,ERDOGMUS ALI,Hamuryudan Esin Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. Turkish Journal of Chemistry 47, no.5 (2023): 1160 - 1168. 10.55730/1300-0527.3602
MLA Ozcesmeci Mukaddes,Can Ceren,ERDOGMUS ALI,Hamuryudan Esin Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. Turkish Journal of Chemistry, vol.47, no.5, 2023, ss.1160 - 1168. 10.55730/1300-0527.3602
AMA Ozcesmeci M,Can C,ERDOGMUS A,Hamuryudan E Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. Turkish Journal of Chemistry. 2023; 47(5): 1160 - 1168. 10.55730/1300-0527.3602
Vancouver Ozcesmeci M,Can C,ERDOGMUS A,Hamuryudan E Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions. Turkish Journal of Chemistry. 2023; 47(5): 1160 - 1168. 10.55730/1300-0527.3602
IEEE Ozcesmeci M,Can C,ERDOGMUS A,Hamuryudan E "Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions." Turkish Journal of Chemistry, 47, ss.1160 - 1168, 2023. 10.55730/1300-0527.3602
ISNAD Ozcesmeci, Mukaddes vd. "Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions". Turkish Journal of Chemistry 47/5 (2023), 1160-1168. https://doi.org/10.55730/1300-0527.3602