Yıl: 2023 Cilt: 38 Sayı: 2 Sayfa Aralığı: 1141 - 1152 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.1011142 İndeks Tarihi: 13-03-2023

Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi

Öz:
Bu çalışmada, ampisilin antibiyotiği içeren atıksuların elektrokimyasal oksidasyonunda yeni nesil Sn/Sb/Ni-Ti anotların uygulanabilirliğinin araştırılması amaçlanmıştır. Elektrolit olarak değerlendirmek üzere sodyum klorür ve potasyum klorür olmak üzere iki farklı tür tuz kullanılmıştır. Ancak, potasyum klorür ile giderim verimleri daha yüksek bulunmuştur. Potasyum klorür ile ampisilin ve kimyasal oksijen ihtiyacının tamamen giderilmesi sırasıyla 5 ve 60 dakika reaksiyon süresi sonunda gerçekleşirken; sodyum klorür ile sırasıyla 5 ve 90 dakika sonra gerçekleşmiştir. Sonuç olarak optimum elektrokimyasal reaksiyon koşulları 750 mg L-1 potasyum klorür ilavesi, pH 8 ve 50 mA cm-2 akım yoğunluğu olarak bulunmuştur. Bu çalışmanın sonucunda, ampisilinin bozunması için yeni nesil Sn/Sb/Ni-Ti anotları ile elektrokimyasal oksidasyon prosesleri, daha az reaksiyon süresi ihtiyacı, tam mineralizasyonun sağlanması ve pH ayarlama adımına ihtiyaç duyulmaması açısından gelecekteki uygulamalar için bu konuda umut verici görünmektedir.
Anahtar Kelime: Elektrokimyasal oksidasyon Sn/Sb/Ti-Ni anot ampisilin giderim

The effect of various parameters on electrochemical removal of ampicillin with Sn/Sb/Ni- Ti anodes

Öz:
In this study, it was investigated the applicability of Sn/Sb/Ni-Ti anodes for electrochemical oxidation of ampicillin in aqueous solutions. Potassium chloride, which is one of the salt types were used as electrolyte, affected the removal efficiencies more positively than sodium chloride. Complete removals of ampicillin and chemical oxygen demand were occured after 5 ve 60 min, respectively with potassium chloride addition; while it was necessary after 5 ve 90 min, respectively with sodium chloride addition. The current density value was found to be 50 mA cm-2, which provides the highest removal efficiencies over 90 minute reaction. In addition, it was seen that it is possible to operate the electrochemical oxidation process more economically, when it was studied at the natural pH value of the aqueous antibiotic solution. According to the results of this study, electrochemical oxidation process with Sn/Sb/Ni-Ti anodes for the degradation of ampicillin is considered quite promising for future applications in terms of less reaction time, full mineralization and no need for an extra pH adjustment step.
Anahtar Kelime: Electrochemical oxidation Sn/Sb/Ti-Ni anode ampicillin removal efficienc

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Tan, B.L., Hawker, D.W., Müller, J.F., Tremblay, L.A.Chapman, H.F., Stir bar sorptive extraction and trace analysis of selected endocrine disruptors in water, biosolids and sludge samples by thermal desorption with gas chromatography–mass spectrometry, Water Research, 42 (1-2), 404-412, 2008.
  • Imai, S., Shiraishi, A., Gamo, K., Watanabe, I., Okuhata, H., Miyasaka, H., Ikeda, K., Bamba, T.Hirata, K., Removal of phenolic endocrine disruptors by Portulaca oleracea, Journal of bioscience and bioengineering, 103 (5), 420-426, 2007.
  • Erdoğan, Ö. Bakioğlu, B., Boğa Çayı (Antalya) Su Kalitesinin Değerlendirilmesi, Uluborlu Mesleki Bilimler Dergisi, 4 (2), 91-98, 2021.
  • Batan M., Planning the use of water in Şanlıurfa province, which struggles with drought: Water footprint analysis, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 2135-2150, 2021.
  • Canlı O., Determination of PAH, PCB and OCP levels and risk assessment in some dam lake/pond surface sediments supplying drinking water to Tekirdağ province, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (3), 1453-1468, 2022.
  • Muratoğlu A., Assessment of water footprint of production: A case study for Diyarbakır province, Journal of The Faculty of Engineering and Architecture of Gazi University, 35 (2), 845-858, 2020.
  • Pehlivan H., Akbulut A., Varol E., Investigation of heavy metal pollution in sediments of southern Marmara Sea (The Kocasu Delta), Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (3), 1272-1288, 2021.
  • Boxall, A.B., The environmental side effects of medication: How are human and veterinary medicines in soils and water bodies affecting human and environmental health?, EMBO reports, 5 (12), 1110-1116, 2004.
  • Amos, G.C., Ploumakis, S., Zhang, L., Hawkey, P.M., Gaze, W.H.Wellington, E.M., The widespread dissemination of integrons throughout bacterial communities in a riverine system, The ISME journal, 12 (3), 681-691, 2018.
  • Cacace, D., Fatta-Kassinos, D., Manaia, C.M., Cytryn, E., Kreuzinger, N., Rizzo, L., Karaolia, P., Schwartz, T., Alexander, J., Merlin, C., Garelick, H., Schmitt, H., de Vries, D., Schwermer, C.U., Meric, S., Ozkal, C.B., Pons, M.-N., Kneis, D.Berendonk, T.U., Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings, Water Research, 162, 320-330, 2019.
  • Makowska, N., Bresa, K., Koczura, R., Philips, A., Nowis, K.Mokracka, J., Urban wastewater as a conduit for pathogenic Gram- positive bacteria and genes encoding resistance to β-lactams and glycopeptides, Science of The Total Environment, 765, 144176, 2021.
  • Osińska, A., Korzeniewska, E., Harnisz, M.Niestępski, S., The prevalence and characterization of antibiotic-resistant and virulent Escherichia coli strains in the municipal wastewater system and their environmental fate, Science of The Total Environment, 577, 367-375, 2017.
  • Pazda, M., Rybicka, M., Stolte, S., Piotr Bielawski, K., Stepnowski, P., Kumirska, J., Wolecki, D.Mulkiewicz, E., Identification of Selected Antibiotic Resistance Genes in Two Different Wastewater Treatment Plant Systems in Poland: A Preliminary Study, Molecules, 25 (12), 2851, 2020.
  • Stachurová, T., Piková, H., Bartas, M., Semerád, J., Svobodová, K.Malachová, K., Beta-lactam resistance development during the treatment processes of municipal wastewater treatment plants, Chemosphere, 280, 130749, 2021.
  • Kosjek, T., Heath, E.Kompare, B., Removal of pharmaceutical residues in a pilot wastewater treatment plant, Analytical and bioanalytical chemistry, 387 (4), 1379-1387, 2007.
  • Daughton, C.G. Ternes, T.A., Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environmental health perspectives, 107 (6), 907-938, 1999.
  • JIACRA, ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals, E. Commission, Editor: EFSA Journal 2017.
  • Kemper, N., Veterinary antibiotics in the aquatic and terrestrial environment, Ecological indicators, 8 (1), 1-13, 2008.
  • Louvet, J.-N., Giammarino, C., Potier, O.Pons, M.-N., Adverse effects of erythromycin on the structure and chemistry of activated sludge, Environmental Pollution, 158 (3), 688-693, 2010.
  • Rozas, O., Contreras, D., Mondaca, M.A., Pérez-Moya, M.Mansilla, H.D., Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions, Journal of hazardous materials, 177 (1-3), 1025-1030, 2010.
  • Ternes, T.A., Occurrence of drugs in German sewage treatment plants and rivers, Water research, 32 (11), 3245-3260, 1998.
  • Kümmerer, K., Pharmaceuticals in the environment: sources, fate, effects and risks: Springer Science & Business Media, 2008.
  • Heberer, T., Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicology letters, 131 (1-2), 5-17, 2002.
  • Ceylan E., Başaran G., Bektaş N., Yatmaz C., The effect of iron-loaded chitosan on the removal of Reactive Orange 16 dye, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (3), 1427-1440, 2022.
  • Košutić, K., Dolar, D., Ašperger, D.Kunst, B., Removal of antibiotics from a model wastewater by RO/NF membranes, Separation and purification technology, 53 (3), 244-249, 2007.
  • Gunes S. Gurel L., Removal of lead from storage battery industry wastewaters by biosorption using capia pepper seeds, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 2279-2292, 2022.
  • De Moura, D.C., De Araújo, C.K.C., Zanta, C.L., Salazar, R.Martínez- Huitle, C.A., Active chlorine species electrogenerated on Ti/Ru0. 3Ti0. 7O2 surface: electrochemical behavior, concentration determination and their application, Journal of Electroanalytical Chemistry, 731, 145-152, 2014.
  • Chiang, L.-C., Chang, J.-E.Wen, T.-C., Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate, Water Research, 29 (2), 671-678, 1995.
  • Liu, Y.-J., Hu, C.-Y.Lo, S.-L., Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes, Journal of Hazardous Materials, 366, 592-605, 2019.
  • Wang, J., Zheng, T., Liu, H., Wang, G., Zhang, Y.Cai, C., Direct and indirect electrochemical oxidation of ethanethiol on grey cast iron anode in alkaline solution, Electrochimica Acta, 356, 136706-136706, 2020.
  • Comninellis, C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochimica Acta, 39 (11-12), 1857-1862, 1994.
  • Montes, I.J., Silva, B.F.Aquino, J.M., On the performance of a hybrid process to mineralize the herbicide tebuthiuron using a DSA® anode and UVC light: A mechanistic study, Applied Catalysis B: Environmental, 200, 237-245, 2017.
  • Comninellis, C. Nerini, A., Anodic oxidation of phenol in the presence of NaCl for wastewater treatment, Journal of applied electrochemistry, 25 (1), 23-28, 1995.
  • Canizares, P., Garcia-Gomez, J., Saez, C.Rodrigo, M., Electrochemical oxidation of several chlorophenols on diamond electrodes Part I. Reaction mechanism, Journal of Applied Electrochemistry, 33 (10), 917-927, 2003.
  • Cotillas, S., Clematis, D., Cañizares, P., Carpanese, M.P., Rodrigo, M.A.Panizza, M., Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes, Chemosphere, 199, 445-452, 2018.
  • dos Santos, A.J., Kronka, M.S., Fortunato, G.V.Lanza, M.R., Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review, Current Opinion in Electrochemistry, 100674, 2021.
  • Zhang, A.-Y., Long, L.-L., Liu, C., Li, W.-W.Yu, H.-Q., Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high-energy {001} facets, Water research, 66, 273- 282, 2014.
  • Zhao, G., Cui, X., Liu, M., Li, P., Zhang, Y., Cao, T., Li, H., Lei, Y., Liu, L.Li, D., Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode, Environmental science & technology, 43 (5), 1480-1486, 2009.
  • Polcaro, A., Palmas, S., Renoldi, F.Mascia, M., On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2- chlorophenolfor wastewater treatment, Journal of Applied Electrochemistry, 29 (2), 147-151, 1999.
  • Gherardini, L., Michaud, P., Panizza, M., Comninellis, C.Vatistas, N., Electrochemical oxidation of 4-chlorophenol for wastewater treatment: definition of normalized current efficiency (φ), Journal of the Electrochemical Society, 148 (6), D78, 2001.
  • Samet, Y., Elaoud, S.C., Ammar, S.Abdelhedi, R., Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes, Journal of hazardous materials, 138 (3), 614-619, 2006.
  • Comninellis, C. Nerini, A., Anodic oxidation of phenol in the presence of NaCl for wastewater treatment, Journal of Applied Electrochemistry, 25 (1)1995.
  • Panizza, M. Cerisola, G., Application of diamond electrodes to electrochemical processes, Electrochimica Acta, 51 (2), 191-199, 2005.
  • Correa-Lozano, B., Comninellis, C.De Battisti, A., Service life of Ti/SnO2–Sb2O5 anodes, Journal of Applied Electrochemistry, 27 (8), 970-974, 1997.
  • Maneelok, S., The relationship between the composition and structure of Ni/Sb-SnO₂ and electrochemical ozone activity, Newcastle University, 2017.
  • Christensen, P., Lin, W., Christensen, H., Imkum, A., Jin, J., Li, G.Dyson, C., Room temperature, electrochemical generation of ozone with 50% current efficiency in 0.5 m sulfuric acid at cell voltages< 3V, Ozone: science & engineering, 31 (4), 287-293, 2009.
  • Cheng, S.-A. Chan, K.-Y., Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode, Electrochemical and Solid State Letters, 7 (3), D4, 2004.
  • Trovó, A.G., Pupo Nogueira, R.F., Agüera, A., Fernandez-Alba, A.R.Malato, S., Degradation of the antibiotic amoxicillin by photo- Fenton process – Chemical and toxicological assessment, Water Research, 45 (3), 1394-1402, 2011.
  • Arslan-Alaton, I. Dogruel, S., Pre-treatment of penicillin formulation effluent by advanced oxidation processes, Journal of hazardous materials, 112 (1-2), 105-113, 2004.
  • Association, A.P.H., Eaton, A.D., Association, A.W.W.Federation, W.E., Standard methods for the examination of water and wastewater, Washington, D.C.: APHA-AWWA-WEF2005.
  • Shen, B., Wen, X.-h.Huang, X., Enhanced removal performance of estriol by a three-dimensional electrode reactor, Chemical Engineering Journal, 327, 597-607, 2017.
  • Kahraman, Ö. Şimşek, İ., Color removal from denim production facility wastewater by electrochemical treatment process and optimization with regression method, Journal of Cleaner Production, 267, 122168, 2020.
  • Nasrullah, M., Singh, L.Wahid, Z., Treatment of sewage by electrocoagulation and the effect of high current density, Energy Environ Eng J, 1 (1)2012.
  • Sun, C.-W. Hsiau, S.-S., Effect of electrolyte concentration difference on hydrogen production during PEM electrolysis, Journal of Electrochemical Science and Technology, 9 (2), 99-108, 2018.
  • Kashefialasl, M., Khosravi, M., Marandi, R.Seyyedi, K., Treatment of dye solution containing colored index acid yellow 36 by electrocoagulation using iron electrodes, International Journal of Environmental Science and Technology:(IJEST), 2 (4), 365, 2006.
  • Mahmoud, M.S., Farah, J.Y.Farrag, T.E., Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes, Egyptian Journal of Petroleum, 22 (1), 211-216, 2013.
  • Wang, Y.-H., Cheng, S., Chan, K.-Y.Li, X.Y., Electrolytic Generation of Ozone on Antimony- and Nickel-Doped Tin Oxide Electrode, Journal of The Electrochemical Society, 152 (11), D197-D197, 2005.
  • Abbasi, M., Soleymani, A.R.Parssa, J.B., Operation simulation of a recycled electrochemical ozone generator using artificial neural network, Chemical Engineering Research and Design, 92 (11), 2618- 2625, 2014.
  • Alver A., Tağaç A.A., Kılıç A., Removal of natural organic matters from aquatic environment by catalytic ozonation processes with silver nanoparticles: Determination of ozonation products, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1285-1295, 2020.
  • Pillai, I.M.S. Gupta, A.K., Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol, Journal of Environmental Management, 176, 45-53, 2016.
  • Sivrioğlu, Ö. Yonar, T., Electrochemical Degradation of Textile Effluent Using Novel Ozone Generating Sn-Sb-Ni Anodes, 2016.
  • Hai, H., Xing, X., Li, S., Xia, S.Xia, J., Electrochemical oxidation of sulfamethoxazole in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation, Science of The Total Environment, 738, 139909, 2020.
  • Qian, S., Liu, S., Jiang, Z., Deng, D., Tang, B.Zhang, J., Electrochemical degradation of tetracycline antibiotics using a Ti/SnO2-Sb2O3/PbO2 anode: kinetics, pathways, and biotoxicity change, Journal of The Electrochemical Society, 166 (6), E192, 2019.
  • Xie, R., Meng, X., Sun, P., Niu, J., Jiang, W., Bottomley, L., Li, D., Chen, Y.Crittenden, J., Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact, Applied Catalysis B: Environmental, 203, 515-525, 2017.
  • Peternel, I., Kusic, H., Marin, V.Koprivanac, N., UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant, Reaction Kinetics, Mechanisms and Catalysis, 108 (1), 17-39, 2013.
  • Das, T.N., Reactivity and role of SO5•- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation, Journal of Physical Chemistry A, 105 (40), 9142-9155, 2001.
  • Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.Tchobanoglous, G., MWH's water treatment: principles and design: John Wiley & Sons, 2012.
  • Li, X.-m., Wang, M., Jiao, Z.Chen, Z., Study on electrolytic oxidation for landfill leachate treatment, China Water and Wastewater, 17 (8), 14- 17, 2001.
  • Deng, Y. Englehardt, J.D., Electrochemical oxidation for landfill leachate treatment, Waste Management, 27 (3), 380-388, 2007.
  • Kaur, R., Kushwaha, J.P.Singh, N., Electro-oxidation of Ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: Evaluation and mechanistic approach, Chemosphere, 193, 685-694, 2018.
  • Yonar, T., Shakir, F.Kurt, A., Investigation of electrochemical color removal from organized industrial district (OID) wastewater treatment plants using new generation Sn/Sb/Ni-Ti anodes, Global Nest Journal, 21 (2), 106-112, 2019.
  • Kurt, A., Anodic oxidation of cefaclor antibiotic in aqueous solution containing potassium chloride, Global NEST Journal, 22, 438-445, 2020.
  • Zhi, D., Qin, J., Zhou, H., Wang, J.Yang, S., Removal of tetracycline by electrochemical oxidation using a Ti/SnO 2–Sb anode: characterization, kinetics, and degradation pathway, Journal of Applied Electrochemistry, 47 (12), 1313-1322, 2017.
  • Yang, Y., Wang, H., Li, J., He, B., Wang, T.Liao, S., Novel Functionalized Nano-TiO2 Loading Electrocatalytic Membrane for Oily Wastewater Treatment, Environmental Science & Technology, 46 (12), 6815-6821, 2012.
  • Liu, Z., Zhu, M., Wang, Z., Wang, H., Deng, C.Li, K., Effective degradation of aqueous tetracycline using a nano-TiO2/carbon electrocatalytic membrane, Materials, 9 (5), 364, 2016.
  • Aquino, J.M., Rodrigo, M.A., Rocha-Filho, R.C., Sáez, C.Cañizares, P., Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes, Chemical Engineering Journal, 184, 221- 227, 2012.
  • Dinc O., Tannic acid oxidation by electroperoxone, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (1), 51- 60, 2020.
  • Shmychkova, O., Luk’yanenko, T., Amadelli, R.Velichenko, A., Physico-chemical properties of PbO2-anodes doped with Sn4+and complex ions, Journal of Electroanalytical Chemistry, 717-718, 196- 201, 2014.
  • Christensen, P.A., Zakaria, K., Christensen, H.Yonar, T., The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni, Journal of the Electrochemical Society, 160 (8), H405, 2013.
  • Parsa, J.B. Abbasi, M., Application of in situ electrochemically generated ozone for degradation of anthraquninone dye Reactive Blue 19, Journal of Applied Electrochemistry, 42 (6), 435-442, 2012.
  • Montilla, F., Morallón, E., De Battisti, A.Vázquez, J.L., Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization, The Journal of Physical Chemistry B, 108 (16), 5036-5043, 2004.
  • Shmychkova, O., Luk'yanenko, T., Dmitrikova, L.Velichenko, A., Modified lead dioxide for organic wastewater treatment: Physicochemical properties and electrocatalytic activity, Journal of the Serbian Chemical Society, 84 (2), 187-198, 2019.
APA Kurt A, Shakir F, Yonar T (2023). Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. , 1141 - 1152. 10.17341/gazimmfd.1011142
Chicago Kurt Ayşe,Shakir Fanar,Yonar Taner Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. (2023): 1141 - 1152. 10.17341/gazimmfd.1011142
MLA Kurt Ayşe,Shakir Fanar,Yonar Taner Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. , 2023, ss.1141 - 1152. 10.17341/gazimmfd.1011142
AMA Kurt A,Shakir F,Yonar T Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. . 2023; 1141 - 1152. 10.17341/gazimmfd.1011142
Vancouver Kurt A,Shakir F,Yonar T Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. . 2023; 1141 - 1152. 10.17341/gazimmfd.1011142
IEEE Kurt A,Shakir F,Yonar T "Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi." , ss.1141 - 1152, 2023. 10.17341/gazimmfd.1011142
ISNAD Kurt, Ayşe vd. "Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi". (2023), 1141-1152. https://doi.org/10.17341/gazimmfd.1011142
APA Kurt A, Shakir F, Yonar T (2023). Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 1141 - 1152. 10.17341/gazimmfd.1011142
Chicago Kurt Ayşe,Shakir Fanar,Yonar Taner Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no.2 (2023): 1141 - 1152. 10.17341/gazimmfd.1011142
MLA Kurt Ayşe,Shakir Fanar,Yonar Taner Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.38, no.2, 2023, ss.1141 - 1152. 10.17341/gazimmfd.1011142
AMA Kurt A,Shakir F,Yonar T Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2023; 38(2): 1141 - 1152. 10.17341/gazimmfd.1011142
Vancouver Kurt A,Shakir F,Yonar T Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2023; 38(2): 1141 - 1152. 10.17341/gazimmfd.1011142
IEEE Kurt A,Shakir F,Yonar T "Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38, ss.1141 - 1152, 2023. 10.17341/gazimmfd.1011142
ISNAD Kurt, Ayşe vd. "Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (2023), 1141-1152. https://doi.org/10.17341/gazimmfd.1011142