Yıl: 2022 Cilt: 54 Sayı: 1 Sayfa Aralığı: 154 - 158 Metin Dili: Türkçe DOI: 10.5152/eurasianjmed.2022.22336 İndeks Tarihi: 24-05-2023

Review of Medical Studies on COVID-19 During the Pandemic Period

Öz:
Due to the COVID-19 pandemic, both the university hospital and the city hospital have faced a significant patient load in our city. During this period, academic articles were written that contributed significantly to the literature on both hospitals struggling with patient density. In our study, we aimed to compile medical articles about COVID-19 in our city using the Web of Science and PubMed database.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Shi Y, Wang G, Cai XP, et al. An overview of COVID-19. J Zhejiang Univ Sci B. 2020;21(5):343- 360. [CrossRef]
  • 2. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;11:1446. [CrossRef]
  • 3. Kerget B, Kerget F, Aksakal A, Aşkın S, Sağlam L, Akgün M. Evaluation of alpha defensin, IL-1 receptor antagonist, and IL-18 levels in COVID- 19 patients with macrophage activation syndrome and acute respiratory distress syndrome. J Med Virol. 2021;93(4):2090-2098. [CrossRef]
  • 4. Kerget B, Kerget F, Koçak AO, et al. Are serum interleukin 6 and surfactant protein D levels associated with the clinical course of COVID-19? Lung. 2020;198(5):777-784. [CrossRef]
  • 5. Kerget B, Kerget F, Aksakal A, Aşkın S, Uçar EY, Sağlam L. Evaluation of the relationship between KIM-1 and suPAR levels and clinical severity in COVID-19 patients: a different perspective on suPAR. J Med Virol. 2021;93(9):5568-5573. [CrossRef]
  • 6. Ciceri P, Bono V, Magagnoli L, et al. Cytokine and chemokine retention profile in COVID-19 patients with chronic kidney disease. Toxins. 2022;14(10):673. [CrossRef]
  • 7. Garcia-Gasalla M, Berman-Riu M, Pons J, et al. Hyperinflammatory State and low T1 adaptive immune response in severe and critical acute COVID-19 patients. Front Med (Lausanne). 2022;9:828678. [CrossRef]
  • 8. Hsu RJ, Yu WC, Peng GR, et al. The role of cytokines and chemokines in severe acute respiratory syndrome coronavirus 2 infections. Front Immunol. 2022;13:832394. [CrossRef]
  • 9. Mousavi SR, Lotfi H, Salmanizadeh S, et al. An experimental in silico study on COVID-19: response of neutrophil-related genes to antibiotics. Health Sci Rep. 2022;5(2):e548. [CrossRef]
  • 10. Sánchez-de Prada L, Gorgojo-Galindo Ó, Fierro I, et al. Time evolution of cytokine profiles associated with mortality in COVID-19 hospitalized patients. Front Immunol. 2022;13: 946730. [CrossRef]
  • 11. Zhao F, Ma Q, Yue Q, Chen H. SARS-CoV-2 infection and lung regeneration. Clin Microbiol Rev. 2022;35(2):e0018821. [CrossRef]
  • 12. Zupin L, Crovella S. Human defensins from antivirals to vaccine adjuvants: rediscovery of the innate immunity arsenal. Protein Pept Lett. 2022;29(2):121-124. [CrossRef]
  • 13. Kasti AN, Synodinou KD, Pyrousis IA, Nikolaki MD, Triantafyllou KD. Probiotics regulating inflammation via NLRP3 inflammasome modulation: a potential therapeutic approach for COVID-19. Microorganisms. 2021;9(11):2376. [CrossRef]
  • 14. Rivas-Santiago B, Jacobo-Delgado Y, Rodriguez- Carlos A. Are host defense peptides and their derivatives ready to be part of the treatment of the next coronavirus pandemic? Arch Immunol Ther Exp (Warsz). 2021;69(1):1. [CrossRef]
  • 15. Tan Q, He L, Meng X, et al. Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J Nanobiotechnology. 2021;19(1):173. [CrossRef]
  • 16. Trombetta A, Comar M, Tommasini A, et al. Sars-cov-2 infection and inflammatory response in a twin pregnancy. Int J Environ Res Public Health. 2021;18(6):3075. [CrossRef]
  • 17. Arakawa N, Matsuyama S, Matsuoka M, et al. Serum stratifin and presepsin as candidate biomarkers for early detection of COVID-19 disease progression. J Pharmacol Sci. 2022;150(1):21-30. [CrossRef]
  • 18. Chang Y, Bai M, You Q. Associations between serum interleukins (IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10) and disease severity of COVID-19: A systematic review and meta-analysis. BioMed Res Int. 2022;2022:2755246. [CrossRef]
  • 19. Dicpinigaitis PV. LUNG year in Review: 2021. Lung. 2022;200(1):1-4. [CrossRef]
  • 20. Kharlamovа OS, Nikolaev KY, Ragino YI. The role of surfactant proteins SP-A and SP-D in viral infection: a focus on COVID-19. Bull Siberian Med. 2022;21(2):195-206. [CrossRef]
  • 21. Mikacic M, Kumric M, Baricevic M, et al. Dynamic of serum TWEAK levels in critically ill COVID-19 male patients. J Clin Med. 2022;11(13):3699. [CrossRef]
  • 22. Muralidharan A, Bauer C, Katafiasz DM, et al. Malondialdehyde acetaldehyde-adduction of surfactant protein D attenuates SARS-CoV-2 spike protein binding and virus neutralization. Alcohol Clin & Exp Res. 2022. [CrossRef]
  • 23. Almuntashiri S, James C, Wang X, Siddiqui B, Zhang D. The potential of lung epithelium specific proteins as biomarkers for COVID-19-associated lung injury. Diagnostics (Basel). 2021;11(9):1643. [CrossRef]
  • 24. Calkovska A, Kolomaznik M, Calkovsky V. Alveolar type II cells and pulmonary surfactant in COVID-19 era. Physiol Res. 2021;70(suppl 2):S195-S208. [CrossRef]
  • 25. Canacik O, Sabirli R, Altintas E, et al. Annexin A1 as a potential prognostic biomarker for COVID- 19 disease: case–control study. Int J Clin Pract. 2021;75(10):e14606. [CrossRef]
  • 26. Kimura T, Onitsuka C, Kawahara T, et al. Extracorporeal membrane oxygenation for secondary organizing pneumonia after severe SARS-CoV-2 infection: a case report. Medicina (Kaunas). 2021;57(10):1013. [CrossRef]
  • 27. Lerum TV, Maltzahn NN, Aukrust P, et al. Persistent pulmonary pathology after COVID-19 is associated with high viral load, weak antibody response, and high levels of matrix metalloproteinase- 9. Sci Rep. 2021;11(1):23205. [CrossRef]
  • 28. Yang M-S, Oh BK, Yang D, et al. Ultra-and microstructural changes of respiratory tracts in SARSCoV- 2 infected Syrian hamsters. Vet Res. 2021;52(1):1-19.
  • 29. Dicpinigaitis PV. LUNG year in Review: 2020. Lung. 2021;199(1):1-5. [CrossRef]
  • 30. Retamozo S, Brito-Zerón P, Sisó-Almirall A, Flores-Chávez A, Soto-Cárdenas MJ, Ramos- Casals M. Haemophagocytic syndrome and COVID-19. Clin Rheumatol. 2021;40(4):1233- 1244. [CrossRef]
  • 31. Suresh V, Mohanty V, Avula K, et al. Quantitative proteomics of hamster lung tissues infected with SARS-CoV-2 reveal host factors having implication in the disease pathogenesis and severity. FASEB J. 2021;35(7):e21713. [CrossRef]
  • 32. Wang S, Li Z, Wang X, Zhang S, Gao P, Shi Z. The role of pulmonary surfactants in the treatment of acute respiratory distress syndrome in COVID-19. Front Pharmacol. 2021;12:698905. [CrossRef]
  • 33. Akbayırlı U, Kaya S, Aksoy Gökmen A. Evaluation of serum Pentraxin-3 and suPAR levels as acute phase reactants in patients with COVID-19. Mikrobiyol Bul. 2022;56(4):631-644. [CrossRef]
  • 34. Enocsson H, Idoff C, Gustafsson A, et al. Soluble urokinase plasminogen activator receptor (suPAR) independently predicts severity and length of hospitalisation in patients with COVID-19. Front Med (Lausanne). 2021;8:791716. [CrossRef]
  • 35. Mucino-Bermejo M-J. COVID-19 and the gastrointestinal tract. Gastroenterol Insights. 2021;12(4):394-404. [CrossRef]
  • 36. Padelli M, Gueye P, Guilloux D, et al. Soluble urokinase plasminogen activator receptor levels are predictive of COVID-19 severity in Afro- Caribbean patients. Biomark Med. 2022;16(3):169-177. [CrossRef]
  • 37. Saygili S, Canpolat N, Cicek RY, et al. Clinical and subclinical acute kidney injury in children with mild-to-moderate COVID-19. Pediatr Res. 2022:1-7. [CrossRef]
  • 38. Su L, Zhang J, Peng Z. The role of kidney injury biomarkers in COVID-19. Ren Fail. 2022;44(1):1280-1288. [CrossRef]
  • 39. Sudhini YR, Wei C, Reiser J. suPAR: an inflammatory mediator for kidneys. Kidney Dis (Basel). 2022;8(4):265-274. [CrossRef]
  • 40. Aksakal A, Kerget B, Kerget F, Aşkın S. Evaluation of the relationship between macrophage migration inhibitory factor level and clinical course in patients with COVID-19 pneumonia. J Med Virol. 2021;93(12):6519-6524. [CrossRef]
  • 41. Afsin DE, Kerget B. Evaluation of the relationship between CRP/albumin ratio and pulmonary function parameters in patients with post-acute COVID-19. Clin Lab. 2022;68(8). [CrossRef]
  • 42. Barksdale C, Kipper FC, Tripathy S, Subbian S, Serhan CN, Panigrahy D. COVID-19 and cancer: start the resolution! Cancer Metastasis Rev. 2022;41(1):1-15. [CrossRef]
  • 43. Harris J, Borg NA. The multifaceted roles of NLRP3-modulating proteins in virus infection. Front Immunol. 2022;13:987453. [CrossRef]
  • 44. Maleknia S, Tavassolifar MJ, Mottaghitalab F, Zali MR, Meyfour A. Identifying novel host-based diagnostic biomarker panels for COVID-19: a whole -bloo d/nas ophar yngea l transcriptome meta-analysis. Mol Med. 2022;28(1):86. [CrossRef]
  • 45. Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The role of MIF and IL-10 as molecular Yin-Yang in the modulation of the host immune microenvironment during infections: African trypanosome infections as a paradigm. Front Immunol. 2022;13:865395. [CrossRef]
  • 46. Wang X, Almet AA, Nie Q. Analyzing network diversity of cell–cell interactions in COVID-19 using single-cell transcriptomics. Front Genet. 2022;13:948508. [CrossRef]
  • 47. Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases—A new kid on the block or just another MIF? FASEB J. 2022;36(11):e22601. [CrossRef]
  • 48. Kerget F, Kerget B, İba Yılmaz S, Kızıltunç A. Evaluation of the relationship between TREM-1/ TREM-2 ratio and clinical course in COVID-19 pneumonia. Int J Clin Pract. 2021;75(10):e14697. [CrossRef]
  • 49. Battaglini D, Lopes-Pacheco M, Castro-Faria- Neto HC, Pelosi P, Rocco PRM. Laboratory biomarkers for diagnosis and prognosis in COVID-19. Front Immunol. 2022;13:857573. [CrossRef]
  • 50. Matos AO, Dantas PHDS, Queiroz HAGB, Silva- Sales M, Sales-Campos H. TREM-2: Friend or foe in infectious diseases? Crit Rev Microbiol. 2022:1- 19. [CrossRef]
  • 51. Gayen Nee’ Betal SG, Urday P, Al-Kouatly HB, et al. COVID-19 infection during pregnancy induces differential gene expression in human cord blood cells from term neonates. Front Pediatr. 2022;10:834771. [CrossRef]
  • 52. Kerget B, Kerget F, Koçak AO, et al. Is endogenous carboxyhaemoglobin level a useful biomarker of clinical course and prognosis in COVID-19 patients? Int J Clin Pract. 2021;75(11):e14680. [CrossRef]
  • 53. Akça HŞ, Atİk D, Köse F. Coexistence of carbon monoxide intoxication and COVID-19. J Emerg Med Case Rep. 2022;13(3):70-73. [CrossRef]
  • 54. Grigorescu BL, Săplăcan I, Bordea IR, et al. Endogenous carboxyhemoglobin level variation in COVID-19 and bacterial sepsis: a novel approach? Microorganisms. 2022;10(2):305. [CrossRef]
  • 55. Huyut MT, Üstündağ H. Prediction of diagnosis and prognosis of COVID-19 disease by blood gas parameters using decision trees machine learning model: a retrospective observational study. Med Gas Res. 2022;12(2):60-66. [CrossRef]
  • 56. Nguyen LS, Helias M, Raia L, et al. Impact of COVID-19 on the association between pulse oximetry and arterial oxygenation in patients with acute respiratory distress syndrome. Sci Rep. 2022;12(1):1462. [CrossRef]
  • 57. Karabulut Uzunçakmak S, Aksakal A, Kerget F, Aydın P, Halıcı Z. Evaluation of IGFBP5 expression and plasma osteopontin level in COVID-19 patients. Adv Med Sci. 2022;68(1):31-37. [CrossRef]
  • 58. Kerget F, Kerget B, Yilmaz SI, Karasahin O, Kiziltunc A, Aslan MH. Same virus, different course: the relationship between monocyte chemoattractant Protein-1 and surfactant protein-A levels and clinical course and prognosis of COVID-19. Flora Infeksiyon Hastaliklari Klin Mikrobiyol Derg. 2021;26(3):410-418.
  • 59. Parlak E, Laloğlu E. Analysis of Chitinase-3-Like Protein 1, IL-1-alpha, and IL-6 as novel inflammatory biomarkers for COVID-19. J Interferon Cytokine Res. 2022;42(10):536-541. [CrossRef]
  • 60. Aydın P, Uzunçakmak SK, Tör İH, Bilen A, Özden A. Comparison of serum adropin levels in patients with diabetes mellitus, COVID-19, and COVID-19 with diabetes mellitus. Eurasian J Med. 2022;54(2):197-201. [CrossRef]
  • 61. Ali II, D’Souza C, Singh J, Adeghate E. Adropin’s role in energy homeostasis and metabolic disorders. Int J Mol Sci. 2022;23(15):8318. [CrossRef]
  • 62. Orun S, Celikkol A, Basol BI, Yeniay E. Diagnostic accuracy of adropin as a preliminary test to exclude acute pulmonary embolism: a prospective study. BMC Pulm Med. 2022;22(1):351. [CrossRef]
  • 63. Laloglu E, Alay H. Role of transforming growth factor-beta 1 and connective tissue growth factor levels in coronavirus disease-2019-related lung Injury: a prospective, observational, cohort study. Rev Soc Bras Med Trop. 2022;55:e06152021. [CrossRef]
  • 64. Kocak OF, Ozgeris FB, Parlak E, et al. Evaluation of serum trace element levels and biochemical parameters of COVID-19 patients according to disease severity. Biol Trace Elem Res. 2022;200(7):3138-3146. [CrossRef]
  • 65. Li Y, Luo W, Liang B. Circulating trace elements status in COVID-19 disease: A meta-analysis. Front Nutr. 2022;9:982032-. [CrossRef]
  • 66. Maares M, Hackler J, Haupt A, et al. Free zinc as a predictive marker for COVID-19 mortality risk. Nutrients. 2022;14(7):1407. [CrossRef]
  • 67. Renata R-BN, Arely G-RA, Gabriela L-MA, Esther M-LM. Immunomodulatory role of microelements in COVID-19 outcome: a relationship with nutritional status. Biol Trace Elem Res. 2022:1-19. [CrossRef]
  • 68. Tsuchiya H. Gustatory and saliva secretory dysfunctions in COVID-19 patients with zinc deficiency. Life (Basel). 2022;12(3):353. [CrossRef]
  • 69. Wang F, Zhong J, Zhang R, et al. Zinc and COVID-19: immunity, susceptibility, severity and intervention. Crit Rev Food Sci Nutr. 2022:1-19. [CrossRef]
  • 70. Boulkrane MS, Ilina V, Melchakov R, et al. COVID-19 disease and vitamin D: a mini-review. Front Pharmacol. 2020;11:604579. [CrossRef]
  • 71. Özgeris FB, Koçak ÖF, Kurt N, Parlak E, Yüce N, Keles MS. High serum progranulin levels in COVID-19 patients: a pilot study. Biochemistry (Mosc). 2022;87(3):207-214. [CrossRef]
  • 72. Kartal Baykan EK, Şebin E, Karaşahin Ö, et al. Galectin-3: can it be a diagnostic tool for pneumonia in Covid-19 patients? Turk J Med Sci. 2021;51(5):2256-2262. [CrossRef]
  • 73. Kesmez Can F, Alay H, Albayrak A, et al. The effects of laboratory parameters on the prognosis of COVID-19. Eurasian J Med. 2022;54(3):242- 247. [CrossRef]
  • 74. Karasahin O, Tosun Tasar P, Kerget B, et al. Prognostic factors of COVID-19 infection in older patients. Flora Infeksiyon Hastaliklari Klin Mikrobiyol Derg. 2021;26(2):238-248.
  • 75. Altunal L, Aydin M. Experience of a training and research hospital in the first wave of the COVID- 19 pandemic; Risk factors associated with the need for intensive care. Klimik Derg. 2021:198-202.
  • 76. Kerget F, Kerget B, Kahraman ÇY, et al. Evaluation of the relationship between PENTRAXIN 3 (PTX3) rs2305619 (281A/G) and rs1840680 (1449A/G) polymorphisms and the clinical course of COVID-19. J Med Virol. 2021;93(12):6653-6659. [CrossRef]
  • 77. Feitosa TA, de Souza Sá MV, Pereira VC, et al. Association of polymorphisms in long PENTRAXIN 3 and its plasma levels with COVID-19 severity. Clin Exp Med. 2022:1-9. [CrossRef]
  • 78. Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene. 2022;844:146790. [CrossRef]
  • 79. Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encep halom yelit is/ch ronic fatigue syndrome: a systematic review. Ann Clin Transl Neuro 80. Zhang H, Wang R, Wang Z, et al. Molecular insight into pentraxin-3: update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother. 2022;156:113783. [CrossRef]
  • 81. Kerget F, Kerget B. Frequency of interleukin-6 rs1800795 (−174G/C) and rs1800797 (−597G/ A) polymorphisms in COVID-19 patients in turkey who develop macrophage activation syndrome. Jpn J Infect Dis. 2021;74(6):543-548. [CrossRef]
  • 82. Dieter C, Brondani LdA, Leitão CB, Gerchman F, Lemos NE, Crispim D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and metaanalysis. PloS One. 2022;17(7):e0270627.
  • 83. Falahi S, Zamanian MH, Feizollahi P, et al. Evaluation of the relationship between IL-6 gene single nucleotide polymorphisms and the severity of COVID-19 in an Iranian population. Cytokine. 2022;154:155889. [CrossRef]
  • 84. Karcıoğlu Batur L, Savaş S, Girgin E, Hekim N. Association of the IL-6R gene polymorphic variant rs2228145 (C> A) with IL-6 gene polymorphisms in a healthy cohort of Turkish population. Genes Immun. 2022:1-11.
  • 85. Mukhopadhyay S, Sinha S, Mohapatra SK. Analysis of transcriptomic data sets supports the role of IL-6. In: NETosis and immunothrombosis in severe COVID-19. BMC Genomic Data. 2021;22(1):1-14.
  • 86. Rovito R, Augello M, Ben-Haim A, Bono V, d’Arminio Monforte A, Marchetti G. Hallmarks of severe COVID-19 pathogenesis: a pas de deux between viral and host factors. Front Immunol. 2022;13:912336. [CrossRef]
  • 87. Reviono, Hendrastutik, Yulia Sari, Betty Suryawati, Darmawan ismail, Ketut Putu Yasa. Frequency of interleukin-6 rs 1800796 (−572G/C) and 2069837 (intron 2A/G), TNF-α rs1800750 (−376G/A), and 1800629 (−308G/A) polymorphism in COVID-19 patients with clinical degrees in Central Java. Bali Med J. 2022;11(3):1364- 1368. [CrossRef]
  • 88. Karabulut Uzunçakmak S, Naldan ME, Dirican E, Kerget F, Halıcı Z. Preliminary investigation of gene expression levels of PAPP-A, STC-2, and HIF-1α in SARS-Cov-2 infected patients. Mol Biol Rep. 2022;49(9):8693-8699. [CrossRef]
  • 89. Karabulut Uzuncakmak S, Dirican E, Naldan ME, Kesmez Can F, Halıcı Z. Investigation of CYP2E1 and caspase-3 Gene Expressions in COVID-19 patients. Gene Rep. 2022;26:101497. [CrossRef]
  • 90. Afsin DE, Kerget B. Evaluation of the relationship between exhaled CO levels with clinical course and parenchymal involvement in COVID-19. Clin Lab. 2022;68(10). [CrossRef]
  • 91. Kerget B, Araz Ö, Akgün M. The role of exhaled nitric oxide (FeNO) in the evaluation of lung parenchymal involvement in COVID-19 patients. Intern Emerg Med. 2022;17(7):1951-1958. [CrossRef]
  • 92. Hua-Huy T, Günther S, Lorut C, et al. Distal lung inflammation assessed by alveolar concentration of nitric oxide is an individualised biomarker of severe COVID-19 pneumonia. J Pers Med. 2022;12(10):1631. [CrossRef]
  • 93. Kerget B, Aksakal A, Kerget F. Evaluation of the relationship between laboratory parameters and pulmonary function tests in COVID-19 patients. Int J Clin Pract. 2021;75(7):e14237. [CrossRef]
  • 94. Çelik M, Yayık AM, Kerget B, et al. High-frequency chest wall oscillation in patients with COVID-19: a pilot feasibility study. Eurasian J Med. 2022;54(2):150-156. [CrossRef]
  • 95. Kerget B, Kerget F, Aydın M, Karaşahin Ö. Effect of montelukast therapy on clinical course, pulmonary function, and mortality in patients with COVID-19. J Med Virol. 2022;94(5):1950-1958. [CrossRef]
  • 96. Kerget B, Çelik E, Kerget F, et al. Evaluation of 3-month follow-up of patients with postacute COVID-19 syndrome. J Med Virol. 2022;94(5):2026-2034. [CrossRef]
  • 97. Baranova A, Cao H, Teng S, Zhang F. A phenome- wide investigation of risk factors for severe COVID-19. J Med Virol. 2023;95(1):e28264. [CrossRef]
  • 98. Gyöngyösi M, Alcaide P, Asselbergs FW, et al. Long COVID and the cardiovascular systemelucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint scientific statement of the ESC working groups on cellular biology of the heart and myocardial & pericardial diseases. Cardiovasc Res. 2022:cvac115. [CrossRef]
  • 99. Kerget B, Cil G, Araz O, Alper F, Akgun M. When and how important is anti-fibrotic therapy in the post-COVID-19 period? Bratisl Lek Listy. 2022;123(9):653-6958. [CrossRef]
APA Aksakal A, Kerget B (2022). Review of Medical Studies on COVID-19 During the Pandemic Period. , 154 - 158. 10.5152/eurasianjmed.2022.22336
Chicago Aksakal Alperen,Kerget Bugra Review of Medical Studies on COVID-19 During the Pandemic Period. (2022): 154 - 158. 10.5152/eurasianjmed.2022.22336
MLA Aksakal Alperen,Kerget Bugra Review of Medical Studies on COVID-19 During the Pandemic Period. , 2022, ss.154 - 158. 10.5152/eurasianjmed.2022.22336
AMA Aksakal A,Kerget B Review of Medical Studies on COVID-19 During the Pandemic Period. . 2022; 154 - 158. 10.5152/eurasianjmed.2022.22336
Vancouver Aksakal A,Kerget B Review of Medical Studies on COVID-19 During the Pandemic Period. . 2022; 154 - 158. 10.5152/eurasianjmed.2022.22336
IEEE Aksakal A,Kerget B "Review of Medical Studies on COVID-19 During the Pandemic Period." , ss.154 - 158, 2022. 10.5152/eurasianjmed.2022.22336
ISNAD Aksakal, Alperen - Kerget, Bugra. "Review of Medical Studies on COVID-19 During the Pandemic Period". (2022), 154-158. https://doi.org/10.5152/eurasianjmed.2022.22336
APA Aksakal A, Kerget B (2022). Review of Medical Studies on COVID-19 During the Pandemic Period. Eurasian Journal of Medicine, 54(1), 154 - 158. 10.5152/eurasianjmed.2022.22336
Chicago Aksakal Alperen,Kerget Bugra Review of Medical Studies on COVID-19 During the Pandemic Period. Eurasian Journal of Medicine 54, no.1 (2022): 154 - 158. 10.5152/eurasianjmed.2022.22336
MLA Aksakal Alperen,Kerget Bugra Review of Medical Studies on COVID-19 During the Pandemic Period. Eurasian Journal of Medicine, vol.54, no.1, 2022, ss.154 - 158. 10.5152/eurasianjmed.2022.22336
AMA Aksakal A,Kerget B Review of Medical Studies on COVID-19 During the Pandemic Period. Eurasian Journal of Medicine. 2022; 54(1): 154 - 158. 10.5152/eurasianjmed.2022.22336
Vancouver Aksakal A,Kerget B Review of Medical Studies on COVID-19 During the Pandemic Period. Eurasian Journal of Medicine. 2022; 54(1): 154 - 158. 10.5152/eurasianjmed.2022.22336
IEEE Aksakal A,Kerget B "Review of Medical Studies on COVID-19 During the Pandemic Period." Eurasian Journal of Medicine, 54, ss.154 - 158, 2022. 10.5152/eurasianjmed.2022.22336
ISNAD Aksakal, Alperen - Kerget, Bugra. "Review of Medical Studies on COVID-19 During the Pandemic Period". Eurasian Journal of Medicine 54/1 (2022), 154-158. https://doi.org/10.5152/eurasianjmed.2022.22336