Yıl: 2023 Cilt: 32 Sayı: 6 Sayfa Aralığı: 772 - 807 Metin Dili: İngilizce DOI: 10.55730/1300-0985.1874 İndeks Tarihi: 22-11-2023

Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye)

Öz:
The Biga Peninsula in northwestern Anatolia, a part of the Alpine-Himalayan orogenic belt, has a complex geology that was formed following the closure of the northern branch of the Neotethys. Intense volcanism and plutonism in the area from the Eocene to the Middle Miocene period caused several Pb-Zn-Cu±Ag±Au deposits to form. The geometry of the mineralizations is largely made up of polymetallic veins, manto-chimneys, and irregular replacement bodies. Ore-bearing and host rocks in the mineralization zones and the wall rocks outside the mineralization zones were compiled in this study. The most common minerals in the skarn zones are garnet, pyroxene, amphibole, epidote, chlorite, quartz, and calcite, while quartz, calcite, and sericite are formed in the hydrothermal alteration zones. Based on the geochemical analyses, the granitoidic rocks are granodiorite, whereas the volcanic rocks are dacite, andesite, trachyandesite, and basaltic andesite. According to the skarn-forming features, the Biga plutons have chemical characteristics that can form Pb-Zn, Cu, Fe, and Au skarns. The carbonate units in the area are made up of marble (fresh), marble (in the alteration zone), and ore calcite. The geochemical analyses of the carbonate units indicate that in composition the fresh marble is almost pure CaCO3. However, the marble in the alteration zone has higher SiO2, Fe2O3, MgO, and MnO contents than that of the fresh marble. These values are higher in ore calcite. The metasandstones mostly consist of arkose and may have contributed to the main mineralization as they have initial ore element enrichment. According to a hierarchical cluster analysis (HCA) result, three different element groups were detected, these being Sb, Rb, Zr, Ag, Y, Mo, Hg, and Nb (increased during alteration), Sr and Ba (decreasing in alteration), and Cu, Au, As, and Cd (mineralization-related). Rare earth element (REE) characteristics indicate that hydrothermal fluids, responsible for the formation of the Biga Peninsula Pb-Zn deposits, are characterized by very low REE concentrations, and consequently the origin of these fluids is predominantly meteoric. The ∑REE, $(Pr/ Yb)_{cn}$, Ce/Ce* values (8.63–24.79 ppm, 2.84–8.23, 0.38–0.82, respectively) of the marble in the alteration zone and ore-bearing skarns (3.34–27.20 ppm, 2.32–5.87, 0.36–0.83) support the findings of the meteoric contribution. Based on the similarities of the general trends and the abundances of REE elements in ore-bearing skarns and wall rocks, it is thought that wall rocks may have contributed part of the lead. The δ34S isotope compositions of galena, sphalerite, pyrite, and chalcopyrite fall into a narrow range of around 0‰. This data indicates that the sulfur in the Pb-Zn±Cu sulfides in the Biga Peninsula is of magmatic origin $(δ^{34}S_{min}: –5.5, δ^{34}S_{max}: 5.2, δ^{34}S_{avg}: –0.7; n:40)$. According to the $δ^{34}S$ values, the mineralizations occurred under intermediate sulfidation conditions, in a reducing environment with H2S-dominant fluids with a near neutral pH value.
Anahtar Kelime: Tethyan Metallogenic Belt hydrothermal skarn rare earth elements S isotope

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akıska S (2010). Cu-Pb-Zn occurrences of the Yenice (Çanakkale) Area. Ph.D. Thesis, Ankara University pp. 234 Ankara (in Turkish with English abstract, unpublished).
  • Akıska S, Demirela G (2014). Origin of the Fluids in the Handeresi, Bağırkaçdere, and Fırıncıkdere (Kalkım, Yenice- ÇANAKKALE) Pb-Zn±Cu Distal Skarn Deposits. Yerbilimleri 35 (3): 199-218 (in Turkish with English abstract). https://doi. org/10.17824/huyuamd.90366
  • Akıska S, Sayılı İS, Demirela G (2013). Geology, mineralogy and the Pb, S isotope study of the Kalkım Pb-Zn±Cu deposits, Biga Peninsula, NW Turkey. Journal of Geosciences 58 (4): 379-396. http://doi.org/10.3190/jgeosci.154
  • Akıska S (2020). Crystallization conditions and compositional variations of silicate and sulfide minerals in the Pb-Zn skarn deposits, Biga Peninsula, NW Turkey. Ore Geology Reviews 118: 103322. https://doi.org/10.1016/j.oregeorev.2020.103322
  • Aldanmaz E, Koprubasi N, Gurer ÖF, Kaymakci N, Gourgaud A (2006). Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey: implications for mantle sources and melting processes. Lithos 86: 50-76. https://doi. org/10.1016/j.lithos.2005.04.003
  • Aldanmaz E, Pearce J, Thirlwall MF, Mitchell J (2000). Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research 102 (1-2): 67-95. https://doi.org/10.1016/S0377- 0273(00)00182-7
  • Altunkaynak Ş (2007). Collision-driven slab breakoff magmatism in Northwestern Anatolia, Turkey. Journal of Geology 115: 63-82. https://doi.org/10.1086/509268
  • Altunkaynak Ş, Dilek Y (2006). Timing and nature of postcollisional volcanism in western Anatolia and geodynamic implications. In: Dilek, Y., Pavlides, S. (Eds.), Post collisional tectonics and magmatism in theMediterranean region and Asia: Geological Society of America Special Paper 409: 321-351. https://doi. org/10.1130/2006.2409(17)
  • Altunkaynak Ş, Genç ŞC (2008). Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey). Lithos 102: 316-340. https:// doi.org/10.1016/j.lithos.2007.06.003
  • Altunkaynak Ş, Sunal G, Aldanmaz E, Genç CŞ, Dilek Y et al (2012). Eocene Granitic Magmatism in NW Anatolia (Turkey) revisited: New implications from comparative zircon SHRIMP U-Pb and 40Ar-39Ar geochronology and isotope geochemistry on magma genesis and emplacement. Lithos 155: 289-309. https://doi.org/10.1016/j.lithos.2012.09.008
  • Anıl M (1984). Genesis of the Pb-Zn-Cu mineralizations and relations with Tertiary volcanism in Yenice area (Arapuçandere-Kurttaşı, Sofular and Kalkım-Handeresi). Jeoloji Mühendisliği Dergisi 8 (2): 19-30 (in Turkish with English abstract).
  • Arth JG (1976). Behavior of trace-elements during magmatic processes - a summary of theoretical models and their applications. Journal of Research of the U.S. Geological Survey 4 (1): 41-47.
  • Aydın Ü, Şen P, Özmen Ö, Şen E (2019). Petrological and geochemical features of Biga Peninsula granitoids, NW Anatolia, Turkey. Bulletin of the Mineral Research and Exploration 160: 81-115. https://doi.org/10.19111/bulletinofmre.466522
  • Aygül M, Topuz G, Okay AI, Satır M, Meyer HP (2012). The Kemer Metamorphic Complex (NW Turkey), a subducted continental margin of the Sakarya zone. Turkish Journal of Earth Sciences 21: 19-35. https://doi.org/10.3906/yer-1006-14
  • Aysal N (2015). Mineral chemistry, crystallization conditions and geodynamic implications of the Oligo-Miocene granitoids in the Biga Peninsula, Northwest Turkey. Journal of Asian Earth Sciences 105: 68-84. https://doi.org/10.1016/j. jseaes.2015.03.026
  • Aysal N, Öngen S, Hanilçi N (2006). Petrography of the contact zone rocks and features of the skarn formation of Karadoru granitoid pluton, Yenice-Çanakkale. İstanbul Üniversitesi Mühendislik Fakültesi Yerbilimleri Dergisi 19 (2): 183-194 (in Turkish with English abstract).
  • Aysal N, Öngen AS, Şahin SY, Kasapçı C, Hanilçi N et al (2021). Peritectic assemblage entrainment and mafic-felsic magma interaction in the Late Oligocene-Early Miocene Karadağ Pluton in the Biga Peninsula, northwest Turkey: petrogenesis and geodynamic implications. Turkish Journal of Earth Sciences 30(2): 279-312. https://doi.org/10.3906/yer-2005-6
  • Barton PB Jr, (1970). Sulfide petrology: Mineralogical Society of America, Special Paper No. 3, p. 187-198.
  • Barton PB Jr, Skinner BJ (1979). Sulfide mineral stabilities, in Barnes, H. L., ed., Geochemistry of hydrothermal ore deposits, Second Edition: New York, Holt, John Wiley & Sons, p. 278-403.
  • Bau M, Romer RL, Lüders V, Dulski P (2003). Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield England. Mineralium Deposita 38: 992-1008. https://doi.org/10.1007/s00126-003- 0376-x
  • Bau M, Dulski P (1995). Comparative study of yttrium and rare- earth element behavior in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology 119: 213-223. https://doi.org/10.1007/BF00307282
  • Beccaletto L, Jenny C (2004). Geology and correlation of the Ezine Zone: a Rhodope fragment in NW Turkey? Turkish Journal of Earth Sciences 13: 145-176.
  • Beccaletto L, Bartolini AC, Martini R, Hochuli PA, Kozur H (2005). Biostratigraphic data from the Cetmi Melange, northwest Turkey: paleogeographic and tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 221: 215- 244. https://doi.org/10.1016/j.palaeo.2005.02.011
  • Beccaletto L, Bonev N, Bosch D, Bruguier O (2007). Record of a Palaeogene syn-collisional extension in the north Aegean Sea: evidence from the Kemer micaschists (NW Turkey). Geological Magazine 144: 393-400. https://doi.org/10.1017/ S001675680700310X
  • Bethke PM, Rye RO, Stoffregen RE, Vikre PG (2005). Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: Integration of geological, stable-isotope, and fluid- inclusion evidence. Chemical Geology 215: 281-315. https://doi. org/10.1016/j.chemgeo.2004.06.041
  • Black KN, Catlos EJ, Oyman T, Demirbilek M (2013). Timing Aegean extension: evidence from in situ U-Pb geochronology and cathodoluminescence imaging of granitoids from NW Turkey. Lithos 180-181: 92-108. https://doi.org/10.1016/j.lithos.2013.09.001 DEMİRELA et al. / Turkish J Earth Sci804
  • Boynton WV (1984). Cosmochemistry of the rare earth elements: meteorite studies. In: Rare Earth Element Geochemistry, P. Henderson (ed.). Elsevier, 63-114, Amsterdam.
  • Bozkaya G (2011). Sulphur- and lead-isotope geochemistry of the Arapuçandere lead-zinc- copper deposit, Biga Peninsula, Northwest Turkey. International Geology Review 53 (1): 116-129. https://doi. org/10.1080/00206810902945090
  • Bozkaya G, Banks AD (2015). Physico-chemical controls on ore deposition in the Arapucandere Pb-Zn-Cu-precious metal deposit, Biga Peninsula. NW Turkey. Ore Geology Reviews 66: 65-81. https://doi.org/10.1016/j.oregeorev.2014.10.014
  • Bozkaya G, Gökçe A (2009). Lead and sulfur isotope studies of the Koru (Çanakkale, Turkey) lead-zinc deposits. Turkish Journal of Earth Sciences 18: 127-137.
  • Bozkaya G, Gökçe A, Grassineau NV (2008). Fluid Inclusion and Stable Isotope Characteristics of the Arapuçandere Pb-Zn-Cu Deposits, Northwest Turkey. International Geology Review 50 (9): 848-862. https://doi.org/10.2747/0020-6814.50.9.848
  • Castorina F, Masi U, Padalino G, Palomba M (2008). Trace-element and Sr-Nd isotopic evidence for the origin of the Sardinian fluorite mineralization (Italy). Applied Geochemistry 23: 2906-2921. https://doi.org/10.1016/j.apgeochem.2008.04.005
  • Cavazza W, Okay AI, Zattin M (2009). Rapid early-middle Miocene exhumation of the Kazdağ Massif (western Anatolia). International Journal of Earth Sciences 98: 1935-1947. https://doi.org/10.1007/ s00531-008-0353-9
  • Çağatay A (1980). Geology and mineralogy of western Anatolian lead- zinc deposits and some comments about their genesis. Türkiye Jeoloji Kurumu Bülteni 23 (2): 119-132 (in Turkish with English abstract).
  • Çiçek M, Oyman T, Palmer MR (2021). Variation of Cu, Fe, S and Pb isotopes in sulfides from hydrothermal mineralization from the Yenice region in Çanakkale, Biga Peninsula, NW Turkey. Ore Geology Reviews 136: 104255. https://doi.org/10.1016/j. oregeorev.2021.104255
  • Çiçek M, Oyman T (2016). Origin and evolution of hydrothermal fluids in epithermal Pb-Zn-Cu ± Au ± Ag deposits at Koru and Tesbihdere mining districts, Çanakkale, Biga Peninsula. NW Turkey. Ore Geology Reviews 78: 176-195. https://doi.org/10.1016/j. oregeorev.2016.03.020
  • Delaloye M, Bingöl E (2000). Granitoids from western and northwestern Anatolia: geochemistry and modeling of geodynamic evolution. International Geology Review 42 (3): 241-268. https://doi. org/10.1080/00206810009465081
  • Demirela G (2011). Geology and genesis of the Çataltepe (Lapseki/ Çanakkale) Pb- Zn±Cu±Ag Deposit. PhD Thesis, Ankara University 220 pp. Ankara (in Turkish with English abstract, unpublished).
  • Demirela G, Akıska S, Sayılı İS, Kuşcu İ (2014). Geology and the alteration features of the Çataltepe (Lapseki-Çanakkale) Pb- Zn±Cu±Ag deposit. Yerbilimleri 35 (2): 109-136 (in Turkish with English abstract).
  • Demirela G, Akıska S (2022). Evaluation of Pb isotope systematics and metal sources of the Biga Pb-Zn Province (NW Turkey) and comparison with the Pb isotope systematics of the Rhodope Massif. Journal of African Earth Sciences 187: 104445. https:// doi.org/10.1016/j.jafrearsci.2021.104445
  • Dilek Y, Altunkaynak Ş, Öner Z (2009). Syn-extensional granitoids in the Menderes core complex, and the late Cenozoic extensional tectonics of the Aegean province. Journal of Geological Society London, Special Publications 321: 197-223. https://doi. org/10.1144/SP321.1
  • Dönmez M, Akçay AE, Genç ŞC, Acar Ş (2005). Middle-Late Eocene volcanism and marine ignimbrites in Biga Peninsula (NW Anatolia-Turkey). Bulletin of the Mineral Research and Exploration 131: 49-61 (in Turkish with English abstract). Dönmez M, Akçay AE, Duru M, Ilgar A, Pehlivan Ş (2008). Geological map of the Çanakkale-H17 Quadrangle. MTA Publications no. 101, Ankara.
  • Duru M, Pehlivan Ş, Şentürk Y, Yavaş F, Kar H (2004). New results on the lithostratigraphy of the Kazdağ Massif in Northwest Turkey. Turkish Journal of Earth Sciences 13: 177-186.
  • Duru M, Pehlivan Ş, Okay Aİ, Şentürk Y, Kar H (2012) Pre-Tertiary geology of Biga Peninsula. MTA Special Report Series No. 28, Ankara, pp. 7–74 (in Turkish).
  • Einaudi MT, Hedenquist JW, Inan EE (2003). Sulfidation state of fluids in active and extinct hydrothermal systems: transition from porphyry to epithermal environments. In: Simmons SF, Graham I (eds) Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the Earth, SEG Special Publication, vol. 10, Society of Economic Geologists, Littleton, Co., pp. 285-313. https://doi.org/10.5382/SP.10.15
  • Erkül F (2010). Tectonic significance of synextensional ductile shear zones within the Early Miocene Alaçamdağ granites, northwestern Turkey. Geological Magazine 147 (4): 611-637. https://doi.org/10.1017/S0016756809990719
  • Fifarek RH, Rye RO (2005). Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO 4 2--H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments. Chemical Geology 215: 253-279. https://doi.org/10.1016/j. chemgeo.2004.06.040
  • Frenzel M, Voudouris P, Cook NJ, Ciobanu CL, Gilbert S et al. (2022). Evolution of a hydrothermal ore-forming system recorded by sulfide mineral chemistry: a case study from the Plaka Pb-Zn- Ag Deposit, Lavrion, Greece. Mineralium Deposita 57: 417- 438. https://doi.org/10.1007/s00126-021-01067-y
  • Genç ŞC, Yılmaz Y (1997). An example of post-collisional magmatism in Northwestern Anatolia: the Kızderbent volcanics (Armutlu peninsula, Turkey). Turkish Journal of Earth Sciences 6: 33-42.
  • Güleç N (1991). Crust-mantle interaction in western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics. Geological Magazine 128 (5): 417- 435. https://doi.org/10.1017/S0016756800018604
  • Haas JR, Shock EL, Sassani DC (1995). Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high temperatures and pressures. Geochimica et Cosmochimica Acta 59 (21): 4329-4350. https://doi. org/10.1016/0016-7037(95)00314-P
  • Harris NBW, Kelley S, Okay Aİ (1994). Post-collisional magmatism and tectonics in northwest Anatolia. Contributions to Mineralogy and Petrology 117: 241-252. https://doi. org/10.1007/BF00310866
  • He Z, Li Z, Li B, Chen J, Xiang Z et al (2021). Ore genesis of the Yadu carbonate-hosted Pb-Zn deposit in Southwest China: Evidence from rare earth elements and C, O, S, Pb, and Zn isotopes. Ore Geology Reviews 131: 104039. https://doi.org/10.1016/j. oregeorev.2021.104039
  • Herron MM (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research 58 (5): 820-829. https://doi.org/10.1306/212F8E77- 2B24-11D7-8648000102C1865D
  • Huston DL (1999). Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: A review. Reviews in Economic Geology 10: 151-180. https://doi.org/10.5382/Rev.08.07
  • Hutchinson W, Finch AA, Boyce AJ (2020). The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore- forming processes. Geochimica et Cosmochimica Acta 288: 176-198. https://doi.org/10.1016/j.gca.2020.07.042
  • Karacık Z, Yılmaz Y, Pearce JA, Ece OI (2008). Petrochemistry of the south Marmara granitoids, northwest Anatolia. Turkey. International Journal of Earth Sciences 97: 1181-1200. https:// doi.org/10.1007/s00531-007-0222-y
  • Kato Y (1993). REE geochemistry of aluminous skarn in the representative Japanese skarn deposits. Resource Geology Special Issue 15: 393-400.
  • Kato Y (1999). Rare Earth Elements as an indicator to origins of skarn deposits: Examples of the Kamioka Zn-Pb and Yoshiwara- Sannotake Cu(–Fe) deposits in Japan. Resource Geology 49 (4): 183-198. https://doi.org/10.1111/j.1751-3928.1999.tb00045.x
  • Ketin İ (1966). Tectonic units of Anatolia (Asia Minor). Bulletin of the Mineral Research and Exploration 66: 23-34.
  • Köprübaşı N, Aldanmaz E (2004). Geochemical constraints on the petrogenesis of Cenozoic I-type granitoids in Northwest Anatolia, Turkey: evidence for magma generation by lithospheric delamination in a post-collisional setting. International Geology Review 46 (8): 705-729. https://doi. org/10.2747/0020-6814.46.8.705
  • Kuşcu İ, Tosdal RM, Gençalioğlu-Kuşcu G (2019). Episodic porphyry Cu (-Mo-Au) formation and associated magmatic evolution in Turkish Tethyan collage. Ore Geology Reviews 107: 119-154. https://doi.org/10.1016/j.oregeorev.2019.02.005
  • Lambert RSJ, Holland JG (1974). Yttrium geochemistry applied to petrogenesis utilizing calcium-yttrium relationships in minerals and rocks. Geochimica et Cosmochimica Acta 38 (9): 1393-1414. https://doi.org/10.1016/0016-7037(74)90095-7
  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986). A chemical classification of volcanic rocks based on the total alkali - silica diagram. Journal of Petrology 27 (3): 745-750. https://doi.org/10.1093/petrology/27.3.745
  • Li JX, Qin KZ, Li GM, Evans NJ, Zhao JX et al. (2016). The Nadun Cu-Au mineralization, central Tibet: root of a high sulfidation epithermal deposit. Ore Geology Reviews 78: 371-387. https:// doi.org/10.1016/j.oregeorev.2016.04.019
  • Lightfoot PC, Hawkesworth CJ, Hergt J, Naldrett AJ, Gorbachev NS et al. (1993). Remobilisation of the continental lithosphere by a mantle plume; major-, trace-element, and Sr-, Nd-, and Pb isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology 114: 171-188. https://doi. org/10.1007/BF00307754
  • Marini L, Moretti R, Accornero M (2011). Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Reviews in Mineralogy and Geochemistry 73 (1): 423-492. https://doi. org/10.2138/ rmg.2011.73.14
  • Meinert LD (1984). Mineralogy and petrology of iron skarns in western British Columbia, Canada. Economic Geology 79 (5): 869-882. https://doi.org/10.2113/gsecongeo.79.5.869
  • Meinert LD (1987). Skarn zonation and fluid evolution in the Groundhog mine, Central mining district, New Mexico. Economic Geology 82 (3): 523-545. https://doi.org/10.2113/ gsecongeo.82.3.523
  • Meinert LD (1992). Skarns and skarn deposits. Geoscience Canada 19 (4): 145-162.
  • Meinert LD (1995). Compositional variation of igneous rocks associated with skarn deposits-chemical evidence for a genetic connection between petrogenesis and mineralization. Mineralogical Association of Canada. Short Course Series 23: 401-418.
  • Middelburg JJ, Van Der Weijden CH, Woittiez JRW (1988). Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology 68: 253-273. https://doi.org/10.1016/0009- 2541(88)90025-3
  • Middlemost EAK (1994). Naming materials in the magma/igneous rock system. Earth- Science Reviews 37: 215-224. https://doi. org/10.1016/0012-8252(94)90029-9
  • Nakano T (1991). An antipathetic relation between the hedenbergite and johannsenite components in skarn clinopyroxene from the Kagata tungsten deposit, Central Japan. The Canadian Mineralogist 29 (3): 427-434.
  • Nakano T, Yoshino T, Shimazaki H, Shimizu M (1994). Pyroxene composition as an indicator in the classification of skarn deposits. Economic Geology 89 (7): 1567-1580. https://doi.org/10.2113/ gsecongeo.89.7.1567
  • O’Neil JR (1986). Theoretical and experimental aspects of isotopic fractionation. Stable Isotopes in High Temperature Geologic Process. In: Reviews in Mineralogy 16: 1-40. https://doi. org/10.1515/9781501508936-006
  • Ohmoto H, Rye RO (1979). Isotopes of sulfur and carbon. In: Barnes, HL (Ed.), Geochemistry of Hydrothermal Ore Deposits, second ed. Wiley, New York, pp. 509-567
  • Okay Aİ (1984). Distribution and characteristics of the north-west Turkish blueschists. Geological Society, London, Special Publications 17 (1), 455-466. https://doi.org/10.1144/GSL. SP.1984.017.01
  • Okay Aİ (1989). Tectonic units and sutures in the Pontides, northern Turkey. In: Tectonic evolution of the Tethyan region. Şengör A.M.C. (ed). NATO ASI Series (259), 109-116
  • Okay Aİ, Satır M (2000a). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine 137 (5): 495-516. https://doi.org/10.1017/ S0016756800004532
  • Okay Aİ, Satır M (2000b). Upper Cretaceous Eclogite-Facies Metamorphic Rocks from the Biga Peninsula, Northwest Turkey. Turkish Journal of Earth Sciences 9: 47-56.
  • Okay Aİ, Siyako M, Bürkan KA (1990). Geology and tectonic evolution of the Biga Peninsula. TPJD Bülteni 2 (1): 83-121 (in Turkish with English abstract).
  • Orhan A, Mutlu H (2017). Geochemical characteristics and Rare- earth element distributions of Kozbudaklar W-Skarn deposit (Bursa, Western Anatolia). Bulletin of the Mineral Research and Exploration 155: 115-130. https://doi.org/10.19111/ bulletinofmre.305992
  • Örgün Y, Gültekin AH, Önal A (2005). Geology, mineralogy and fluid inclusion data from the Arapucan Pb-Zn-Cu-Ag deposit, Canakkale, Turkey. Journal of Asian Earth Sciences 25 (4): 629- 642. https://doi.org/10.1016/j.jseaes.2004.06.006
  • Özdamar Ş, Roden MF, Zou H, Billor MZ, Hames W et al. (2021). Petrogenesis of oligocene plutonic rocks in western Anatolia (NW Turkey): Insights from mineral and rock chemistry, Sr-Nd isotopes, and U-Pb, Ar-Ar and (U-Th)/He geochronology. Geochemistry 81 (2): 125747. https://doi.org/10.1016/j.chemer.2021.125747
  • Öztürk YY, Helvacı C (2008). Skarn alteration and Au-Cu mineralization associated with Tertiary granitoids in Northwestern Turkey: Evidence from the Evciler Deposit, Kazdağ Massif, Turkey. Economic Geology 103 (8): 1665-1682. https://doi.org/10.2113/ gsecongeo.103.8.1665
  • Pearce JA, Harris, NBW, Tindle AG (1984). Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25 (4): 956-983. https://doi.org/10.1093/ petrology/25.4.956
  • Pearce JA (1996). Sources and Settings of Granitic Rocks. Episode 19 (4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005.
  • Piccoli PM, Candela PA (1994). Titanite microchemistry and the interpretation of magmatic and hydrothermal processes in granitic systems. Abstracts with Programs – Geological Society of America 27 (7): 499.
  • Qicong L, Congqiang L (2003). Geochemical behaviors of REE and other trace elements during the formation of strata- bound skarns and related deposits: A case study of the Dongguashan Cu (Au) deposit, Anhui Province, China. Acta Geological Sinica – English Edition 77 (2): 246-257. https:// doi.org/10.1111/j.1755-6724.2003.tb00568.x
  • Rye RO (1993). The evolution of magmatic fluids in the epithermal environment: the stable isotope perspective. Economic Geology 88 (3): 733-752. https://doi.org/10.2113/ gsecongeo.88.3.733
  • Rye RO (2005). A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology 215: 5-36. https:// doi.org/10.1016/j.chemgeo.2004.06.034
  • Rye RO, Ohmoto H (1974). Sulfur and Carbon Isotopes and ore genesis: A review. Economic Geology 69 (6): 826-842. https:// doi.org/10.2113/gsecongeo.69.6.826
  • Sánchez V, Cardellach E, Corbella M, Vindel E, Martín-Crespo T et al. (2010). Variability in fluid sources in the fluorite deposits from Asturias (N Spain): further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data. Ore Geology Reviews 37 (2): 87-100. https://doi.org/10.1016/j. oregeorev.2009.12.001
  • Schwinn G, Markl G (2005). REE systematics in hydrothermal fluorite. Chemical Geology 216: 225-248. https://doi. org/10.1016/j.chemgeo.2004.11.012
  • Seal RR II (2006). Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry 61 (1): 633-677. https://doi.org/10.2138/rmg.2006.61.12
  • Seyitoğlu G, Scott B (1992). Late Cenozoic volcanic evolution of the northeastern Aegean region. Journal of Volcanology and Geothermal Research 54: 157-176. https://doi. org/10.1016/0377-0273(92)90121-S
  • Seyitoğlu G, Scott B (1996). The cause of N-S extensional tectonics in western Turkey: tectonic escape vs. backarc spreading vs. orogenic collapse. Journal of Geodynamics 22: 145-153. https://doi.org/10.1016/0264-3707(96)00004-X
  • Sharma S (1996) Applied multivariate techniques, John Wiley and Sons, Inc., New York, 512 pp.
  • Siyako M, Bürkan KA, Okay Aİ (1989). Tertiary geology and hydrocarbon potential of the Biga and Gelibolu peninsulas. TPJD Bülteni 1 (3): 183-200 (in Turkish with English abstract).
  • Şengör AMC, Yılmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75: 181-241. https://doi. org/10.1016/0040-1951(81)90275-4
  • Şengün F, Çalık A (2007). Metamorphic Features and Correlation of the Çamlıca Metamorphics (Biga Peninsula, NW Turkey). Türkiye Jeoloji Bülteni 50: 1-16 (in Turkish with English abstract).
  • Şengün F, Yigitbaş E, Tunç İO (2011). Geology and tectonic emplacement of eclogite and blueschist, Biga Peninsula, Northwest Turkey. Turkish Journal of Earth Sciences 20: 273- 285.
  • Tao R, Runsheng H, Yuzhao H (2012). REE Characteristic of Hydrothermal Calcite in Langdu Skarn Copper Deposit. Advanced Materials Research 524-527: 184-189.
  • Taylor HP Jr (1997). Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed.) Geochemistry of Hydrothermal Ore Deposits, 3rd ed., pp. 229- 302. New York, NY: Wiley.
  • Taylor Y, McLennan SM (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 pp.
  • Taylor SR (1969). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta 28 (8): 1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2
  • Tomascak PB (2004). Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Reviews in Mineralogy and Geochemistry 55(1): 153- 195. https://doi.org/10.2138/gsrmg.55.1.153
  • Turekian KK, Wedepohl KH (1961). Distribution of the Elements in Some Major Units of the Earth’s Crust. GSA Bulletin 72 (2): 175-192. https://doi.org/10.1130/0016-7606(1961)72[175:DO TEIS]2.0.CO;2
  • Voudouris P, Melfos V, Spry PG, Bonsall TA, Tarkian M et al. (2008). Mineralogical and fluid inclusion constraints on the evolution of the Plaka intrusion-related ore system, Lavrion, Greece. Mineralogy and Petrology 93: 79-110. https://doi.org/10.1007/ s00710-007-0218-0
  • Wagner GA, Pernicka E, Seeliger TC, Öztunalı Ö, Baranyi I et al. (1985). Geologische untersuchungen zur fruhen metallurgie in NW-Anatolien. Bulletin of the Mineral Research and Exploration 100 (101): 45-81 (in German with English abstract).
  • Whitney PR, Olmsted JF (1998). Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA. Geochimica et Cosmochimica Acta 62 (17): 2965-2977. https://doi.org/10.1016/S0016-7037(98)00230-0
  • Yaltırak C, Okay Aİ (2004). Geology of the Paleotethys units at the northern part of Edremit Bay. İTÜ Dergisi 3 (1): 67-79 (in Turkish with English abstract).
  • Yılmaz Y (1989). An approach to the origin of young volcanic rocks of western Turkey. In: Sengör, A.M.C. (Ed.), Tectonic Evolution of the Tethyan Region: The Hague. Kluwer Academic, pp. 159- 189.
  • Yılmaz Y (1990). Comparison of young volcanic associations of western and eastern Anatolia under compressional regime; a review. Journal of Volcanology and Geothermal Research 44: 69-87.
  • Yılmaz Y, Genç SC, Gürer OF, Bozcu M, Yılmaz K et al. (2000). When did the western Anatolian grabens begin to develop? In: Bozkurt, E., Winchester, J.A., Piper, J.A.D. (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area: Geol Soc London, Special Publication 173: 353-384. https://doi. org/10.1144/GSL.SP.2000.173.01.17
  • Yılmaz Y, Polat A (1998). Geology and evolution of the Thrace volcanism, Turkey. Acta Vulcanologica 10: 293-303.
  • Yiğit Ö (2012). A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula. NW Turkey. Ore Geology Reviews 46: 118-148. https://doi.org/10.1016/j.oregeorev.2011.09.015
  • Yun S, Einaudi MT (1982). Zinc-lead skarns of the Yeonhwa Ulchin district, South Korea. Economic Geology 77 (4): 1013-1032. https://doi.org/10.2113/gsecongeo.77.4.1013
  • Zamanian H, Radmard K (2016). Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran - a key to determine conditions of mineralization. Geologos 22 (1): 33-47. https://doi.org/10.1515/logos-2016-0003
APA Demirela G, AKISKA S, AKISKA E (2023). Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). , 772 - 807. 10.55730/1300-0985.1874
Chicago Demirela Gökhan,AKISKA Sinan,AKISKA Elif Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). (2023): 772 - 807. 10.55730/1300-0985.1874
MLA Demirela Gökhan,AKISKA Sinan,AKISKA Elif Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). , 2023, ss.772 - 807. 10.55730/1300-0985.1874
AMA Demirela G,AKISKA S,AKISKA E Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). . 2023; 772 - 807. 10.55730/1300-0985.1874
Vancouver Demirela G,AKISKA S,AKISKA E Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). . 2023; 772 - 807. 10.55730/1300-0985.1874
IEEE Demirela G,AKISKA S,AKISKA E "Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye)." , ss.772 - 807, 2023. 10.55730/1300-0985.1874
ISNAD Demirela, Gökhan vd. "Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye)". (2023), 772-807. https://doi.org/10.55730/1300-0985.1874
APA Demirela G, AKISKA S, AKISKA E (2023). Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). Turkish Journal of Earth Sciences, 32(6), 772 - 807. 10.55730/1300-0985.1874
Chicago Demirela Gökhan,AKISKA Sinan,AKISKA Elif Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). Turkish Journal of Earth Sciences 32, no.6 (2023): 772 - 807. 10.55730/1300-0985.1874
MLA Demirela Gökhan,AKISKA Sinan,AKISKA Elif Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). Turkish Journal of Earth Sciences, vol.32, no.6, 2023, ss.772 - 807. 10.55730/1300-0985.1874
AMA Demirela G,AKISKA S,AKISKA E Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). Turkish Journal of Earth Sciences. 2023; 32(6): 772 - 807. 10.55730/1300-0985.1874
Vancouver Demirela G,AKISKA S,AKISKA E Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye). Turkish Journal of Earth Sciences. 2023; 32(6): 772 - 807. 10.55730/1300-0985.1874
IEEE Demirela G,AKISKA S,AKISKA E "Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye)." Turkish Journal of Earth Sciences, 32, ss.772 - 807, 2023. 10.55730/1300-0985.1874
ISNAD Demirela, Gökhan vd. "Mineralogical-petrographical features, geochemical characteristics, and S isotope variability of Pb-Zn deposits in the Sakarya fragment of the Biga Peninsula (NW Türkiye)". Turkish Journal of Earth Sciences 32/6 (2023), 772-807. https://doi.org/10.55730/1300-0985.1874