Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem

Yıl: 2022 Cilt: 15 Sayı: 2 Sayfa Aralığı: 327 - 346 Metin Dili: İngilizce DOI: 10.30831/akukeg.975348 İndeks Tarihi: 29-07-2022

Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem

Öz:
In this research, it was aimed to analyze the problem solving strategies used during solving problems related to constant speed and constant acceleration motion, which are often used in graphs, according to the presentation of the problem (text and graph). The research was carried out with 119 students studying in the 11th grade. In the research conducted in a case study pattern, data were collected using the problem solving strategies scale used in Physics at the high school level and open-ended questions about problems presented in two different ways. Scores from the scale were analyzed through the SPSS 25 program, and data from open-ended questions were analyzed by content analysis. According to the results obtained from the scales, it was determined that the problemsolving strategies used by students did not differ according to the presentation of the problem, but there was a difference in the stages of understanding the problem and organizing the problem according to the results obtained from open-ended questions. According to these results, it can be said that the way the problem is presented mostly affects the stage of understanding the problem. The understanding phase affects the solution process and the time required for the solution. Therefore, different techniques can be used to understand the problem according to the presentation of the problem during teaching.
Anahtar Kelime: Graphical Representation Physics Problem Solving Strategy Problem Presentation

Öğrencilerin Hareket Problemlerinin Çözümünde Kullandıkları Stratejilerin Problemin Sunumuna Göre İncelenmesi

Öz:
Bu araştırmada grafiklerden sıklıkla faydalanılan sabit hızlı ve sabit ivmeli harekete ilişkin problemlerin çözümü sırasında kullanılan problem çözme stratejilerinin problemin sunumuna (metin ve grafik) göre incelenmesi amaçlanmıştır. Araştırma 11. sınıfta öğrenim görmekte olan 119 öğrenci ile yürütülmüştür. Bir durum çalışması deseninde yürütülen araştırmada Lise Düzeyinde Fizikte Kullanılan Problem Çözme Stratejileri Ölçeği ve iki farklı şekilde sunulan problemlere ilişkin açık uçlu sorularla veriler toplanmıştır. Ölçekten alınan puanlar SPSS 25 programı aracılığı ile analiz edilerek, açık uçlu sorulardan elde edilen veriler ise içerik analizine tabi tutularak bulgulara ulaşılmıştır. Ölçeklerden elde edilen bulgulara göre öğrencilerin kullandıkları problem çözme stratejilerinin problemin sunumuna göre farklılaşmadığı, ancak açık uçlu sorulardan elde edilen bulgulara göre problemi anlama ve problemi örgütleme aşamalarında farklılık olduğu belirlenmiştir. Bu sonuçlara göre problemin sunum şeklinin en çok problemi anlama aşamasını etkilediği söylenebilir. Öğrencilerin en fazla problemi anlama aşamasına yönelik stratejileri kullandıkları tespit etilmiştir. Anlama aşaması çözüm sürecini ve çözüm için gereken süreyi etkilemektedir. Bu nedenle öğretim sırasında problemin sunumuna göre problemi anlamaya yönelik farklı teknikler kullanılabilir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Álvarez, V., Torres, T., Gangoso, Z., & Sanjose, V. (2020). A cognitive model to analyse physics and chemistry problem-solving skills: Mental representations ımplied ın solving actions. Journal of Baltic Science Education, 19(5), 730. https://doi.org/10.33225/jbse/20.19.730
  • Arsal, Z. (2009). Problem çözme stratejilerinin problem çözme başarısını yordama gücü. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 9(1), 103-113. Beichner, R. J. (2002). GOAL oriented problem solving. ftp.ncsu.edu/pub/ncsu/beichner/RB/GOALPaper.pdf
  • Bollen, L., van Kampen, P., Baily, C., Kelly, M., & De Cock, M. (2017). Student difficulties regarding symbolic and graphical representations of vector fields. Physical Review Physics Education Research, 13(2), 020109. https://doi.org/10.1103/PhysRevPhysEducRes.13.020109
  • Çalışkan, S. (2007). Problem çözme stratejileri öğretiminin fizik başarısı, tutumu, öz yeterliği üzerindeki etkileri ve strateji kullanımı (Yayımlanmamış doktora tezi). Dokuz Eylül Üniversitesi.
  • Çalışkan, S., Sezgin, G. S., Selçuk, G. S., & Erol, M. (2006). Fizik ögretmen adaylarının problem çözme davranışlarının değerlendirilmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 30, 73-81.
  • Carotenuto, G., Di Martino, P., & Lemmi, M. (2021). Students’ suspension of sense making in problem solving. ZDM–Mathematics Education, 53(4), 817-830. https://doi.org/10.1007/s11858-020-01215-0
  • Ceuppens, S., Bollen, L., Deprez, J., Dehaene, W., & De Cock, M. (2019). 9th grade students’ understanding and strategies when solving x (t) problems in 1D kinematics and y (x) problems in mathematics. Physical Review Physics Education Research, 15(1), 010101. https://doi.org/10.1103/PhysRevPhysEducRes.15.010101
  • De Cock, M. (2012). Representation use and strategy choice in physics problem solving. Physical Review Special Topics-Physics Education Research, 8(2), 020117.
  • Erceg, N., & Aviani, I. (2014). Students’ understanding of velocity-time graphs and the sources of conceptual difficulties. Croatian Journal of Education: Hrvatski časopis za odgoj i obrazovanje, 16(1), 43-80.
  • Eryılmaz-Toksoy, S. (2020). 11. sınıf öğrencilerinin hareket türlerini açıklama ve ilgili grafikleri çizme, yorumlama bilgilerinin incelenmesi. Bolu Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 20(3), 1423-1441. https://dx.doi.org/10.17240/aibuefd.2020..-618011
  • Eryılmaz-Toksoy, S., & Çalışkan, S. (2015). Fizikte kullanılan problem çözme stratejileri ölçeğinin lise öğrencileri için uygulanabilirliğinin test edilmesi. Necatibey Faculty of Education Electronic Journal of Science & Mathematics Education, 9(2), 158-177. https://doi.org/10.17522/nefefmed.84175
  • Fortus, D. (2009). The importance of learning to make assumptions. Science Education, 93(1), 86-108. https://doi.org/10.1002/sce.20295
  • Fraser, J. M., Timan, A. L., Miller, K., Dowd, J. E., Tucker, L., & Mazur, E. (2014). Teaching and physics education research: bridging the gap. Reports on Progress in Physics, 77(3), 032401.
  • Gürel, D. K., & Körhasan, N. D. (2018). A critical look at the physics education research in Turkey and in the world. Bartın University Journal of Faculty of Education, 7(3), 935-957. https://doi.org/10.14686/buefad.403625
  • Handhika, J., Istiantara, D. T., & Astuti, S. W. (2019, October). Using graphical presentation to reveals the student’s conception of kinematics. In Journal of Physics: Conference Series (Vol. 1321, No. 3, p. 032064). IOP Publishing.
  • Heller, P., Keith, R., & Anderson, S. (1992). Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving. American Journal of Physics, 60(7), 627-636. https://doi.org/10.1119/1.17117
  • Hung, C. S., & Wu, H. K. (2018). Tenth graders’ problem-solving performance, selfefficacy, and perceptions of physics problems with different representational formats. Physical Review Physics Education Research, 14(2), 020114. https://doi.org/10.1103/PhysRevPhysEducRes.14.020114
  • Ibrahim, B., & Rebello, N. S. (2012). Representational task formats and problem solving strategies in kinematics and work. Physical Review Special Topics-Physics Education Research, 8(1), 010126. https://doi.org/10.1103/PhysRevSTPER.8.010126
  • İnce, E. (2018). An overview of problem solving studies in physics education. Journal of Education and Learning, 7(4), 191-200. https://doi.org/10.5539/jel.v7n4p191
  • Ivanjek, L., Susac, A., Planinic, M., Andrasevic, A., & Milin-Sipus, Z. (2016). Student reasoning about graphs in different contexts. Physical Review Physics Education Research, 12(1), 010106. https://doi.org/10.1103/PhysRevPhysEducRes.12.010106
  • Jua, S. K. (2018, May). The profile of students’ problem-solving skill in physics across interest program in the secondary school. In Journal of Physics: Conference Series (Vol. 1022, No. 1, p. 012027). IOP Publishing.
  • Kelly, R., McLoughlin, E., & Finlayson, O. E. (2016). Analysing student written solutions to investigate if problem-solving processes are evident throughout. International Journal of Science Education, 38(11), 1766-1784. https://doi.org/10.1080/09500693.2016.1214766
  • Kim, M., & Pegg, P. (2019). Case analysis of children’s reasoning in problem-solving process, International Journal of Science Education, 41(6), 739-758. https://doi.org/10.1080/09500693.2019.1579391
  • Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. The journal of the learning sciences, 13(2), 129-164. https://doi.org/10.1207/s15327809jls1302_1
  • Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and selfassessment when solving physics problems. Physical Review Special TopicsPhysics Education Research, 1(1), 010104. https://doi.org/10.1103/PhysRevSTPER.1.010104
  • Kohl, P. B., & Finkelstein, N. D. (2006). Effects of representation on students solving physics problems: A fine-grained characterization. Physical Review Special TopicsPhysics Education Research, 2(1), 010106. https://doi.org/10.1103/PhysRevSTPER.2.010106
  • Mansyur, J. (2015). Teachers’ and students’ preliminary stages in physics problem solving. International Education Studies, 8(9), 1-13. http://dx.doi.org/10.5539/ies.v8n9p1
  • Maries, A. (2013). Role of multiple representations in physics problem solving (Unpublished doctoral dissertation). University of Pittsburgh.
  • Maries, A., & Singh, C. (2018). Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students’ problem solving performance?. Physical Review Physics Education Research, 14(1), 010114. https://doi.org/10.1103/PhysRevPhysEducRes.14.010114
  • McDermott, L. C. (1993). Guest Comment: How we teach and how students learn-a mismatch. American Journal of Physics, 61(4), 295-298. https://doi.org/10.1119/1.17258
  • McMillan, J. H., & Schumacher, S. (2010). Research in education: Evidence-based inquiry, myeducationlab series. Pearson.
  • Meltzer, D. E. (2005). Relation between students’ problem-solving performance and representational format. American journal of physics, 73(5), 463-478. https://doi.org/10.1119/1.1862636
  • Milbourne, J., & Wiebe, E. (2018). The role of content knowledge in ill-structured problem solving for high school physics students. Research in Science Education, 48(1), 165-179. https://doi.org/10.1007/s11165-016-9564-4
  • Moreno, R., Ozogul, G., & Reisslein, M. (2011). Teaching with concrete and abstract visual representations: Effects on students’ problem solving, problem representations, and learning perceptions. Journal of Educational Psychology, 103(1), 32-47. https://doi.org/10.1037/a0021995
  • Özcan, Ö. (2011). Fizik öğretmen adaylarının özel görelilik kuramı ile ilgili problem çözme yaklaşımları. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 40, 310-320.
  • Planinic, M., Ivanjek, L., Susac, A., & Milin-Sipus, Z. (2013). Comparison of university students’ understanding of graphs in different contexts. Physical Review Special Topics-Physics Education Research, 9(2), 020103. https://doi.org/10.1103/PhysRevSTPER.9.020103
  • Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393-1414. https://doi.org/10.1007/s10763-012-9344-1
  • Rosenquist, M. L., & McDermott, L. C. (1987). A conceptual approach to teaching kinematics. American Journal of Physics, 55(5), 407-415. https://doi.org/10.1119/1.15122
  • Sezen, N., Uzun, M. S., & Bulbul, A. (2012). An investigation of preservice physics teacher’s use of graphical representations. Procedia-Social and Behavioral Sciences, 46, 3006-3010. https://doi.org/10.1016/j.sbspro.2012.05.605
  • Shin, N., Jonassen, D. H., & McGee, S. (2003). Predictors of well‐structured and ill‐structured problem solving in an astronomy simulation. Journal of Research in Science Teaching, 40(1), 6-33. https://doi.org/10.1002/tea.10058
  • Steele, D. F. (2007). Understanding students’ problem-solving knowledge through their writing. Mathematics Teaching in the Middle School, 13(2), 102-109. ttps://doi.org/10.5951/MTMS.13.2.0102
  • Tekbıyık, A., & Akdeniz, A. R. (2010). Bağlam temelli ve geleneksel fizik problemlerinin karşılaştırılması üzerine bir inceleme. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 4(1), 123-140.
  • Turşucu, S., Spandaw, J., & De Vries, M. J. (2020). The effectiveness of activation of prior mathematical knowledge during problem-solving in physics. EURASIA Journal of Mathematics, Science and Technology Education, 16(4), em183. https://doi.org/10.29333/ejmste/116446
  • Wright, D. S., & Williams, C. D. (1986). A WISE strategy for introductory physics. The Physics Teacher, 24, 211-216. https://doi.org/10.1119/1.2341986
APA eryılmaz toksoy s (2022). Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. , 327 - 346. 10.30831/akukeg.975348
Chicago eryılmaz toksoy seyhan Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. (2022): 327 - 346. 10.30831/akukeg.975348
MLA eryılmaz toksoy seyhan Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. , 2022, ss.327 - 346. 10.30831/akukeg.975348
AMA eryılmaz toksoy s Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. . 2022; 327 - 346. 10.30831/akukeg.975348
Vancouver eryılmaz toksoy s Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. . 2022; 327 - 346. 10.30831/akukeg.975348
IEEE eryılmaz toksoy s "Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem." , ss.327 - 346, 2022. 10.30831/akukeg.975348
ISNAD eryılmaz toksoy, seyhan. "Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem". (2022), 327-346. https://doi.org/10.30831/akukeg.975348
APA eryılmaz toksoy s (2022). Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. Kuramsal Eğitimbilim Dergisi, 15(2), 327 - 346. 10.30831/akukeg.975348
Chicago eryılmaz toksoy seyhan Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. Kuramsal Eğitimbilim Dergisi 15, no.2 (2022): 327 - 346. 10.30831/akukeg.975348
MLA eryılmaz toksoy seyhan Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. Kuramsal Eğitimbilim Dergisi, vol.15, no.2, 2022, ss.327 - 346. 10.30831/akukeg.975348
AMA eryılmaz toksoy s Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. Kuramsal Eğitimbilim Dergisi. 2022; 15(2): 327 - 346. 10.30831/akukeg.975348
Vancouver eryılmaz toksoy s Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem. Kuramsal Eğitimbilim Dergisi. 2022; 15(2): 327 - 346. 10.30831/akukeg.975348
IEEE eryılmaz toksoy s "Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem." Kuramsal Eğitimbilim Dergisi, 15, ss.327 - 346, 2022. 10.30831/akukeg.975348
ISNAD eryılmaz toksoy, seyhan. "Analysis of Strategies Used by Students in Solving Motion Problems According to the Presentation of the Problem". Kuramsal Eğitimbilim Dergisi 15/2 (2022), 327-346. https://doi.org/10.30831/akukeg.975348